Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Interferences buffers

Buffer/product interference Buffer/product cytotoxicity Suitable spiking and sampling points Scale-down... [Pg.269]

A sample contains a weak acid analyte, HA, and a weak acid interferent, HB. The acid dissociation constants and partition coefficients for the weak acids are as follows Ra.HA = 1.0 X 10 Ra HB = 1.0 X f0 , RpjHA D,HB 500. (a) Calculate the extraction efficiency for HA and HB when 50.0 mF of sampk buffered to a pH of 7.0, is extracted with 50.0 mF of the organic solvent, (b) Which phase is enriched in the analyte (c) What are the recoveries for the analyte and interferent in this phase (d) What is the separation factor (e) A quantitative analysis is conducted on the contents of the phase enriched in analyte. What is the expected relative erroi if the selectivity coefficient, Rha.hb> is 0.500 and the initial ratio ofHB/HA was lO.O ... [Pg.229]

Because they are weak acids or bases, the iadicators may affect the pH of the sample, especially ia the case of a poorly buffered solution. Variations in the ionic strength or solvent composition, or both, also can produce large uncertainties in pH measurements, presumably caused by changes in the equihbria of the indicator species. Specific chemical reactions also may occur between solutes in the sample and the indicator species to produce appreciable pH errors. Examples of such interferences include binding of the indicator forms by proteins and colloidal substances and direct reaction with sample components, eg, oxidising agents and heavy-metal ions. [Pg.468]

The hberated iodine is measured spectrometricaHy or titrated with Standard sodium thiosulfate solution (I2 +28203 — 2 1 VS Og following acidification with sulfuric acid buffers are sometimes employed. The method requires measurement of the total gas volume used in the procedure. The presence of other oxidants, such as H2O2 and NO, can interfere with the analysis. The analysis is also technique-sensitive, since it can be affected by a number of variables, including temperature, time, pH, iodide concentration, sampling techniques, etc (140). A detailed procedure is given in Reference 141. [Pg.503]

Calcium and magnesium can be titrated readily with disodium ethylenediaminetetraacetate, with Eriochrome Black T as the indicator. The solution is buffered at pH 10.0. Certain metal ions interfere with this procedure by causing fading or indistinct end points. Cyanide, sulfide, or hydroxjiamine can be used to eliminate or minimise the interferences. [Pg.231]

Fluoride. A fluoride concentration of ca 1 mg/L is helpful in preventing dental caries. Eluoride is deterrnined potentiometrically with an ion-selective electrode. A buffer solution of high total ionic strength is added to the solution to eliminate variations in sample ionic strength and to maintain the sample at pH 5—8, the optimum range for measurement. (Cyclohexylenedinitrilo)tetraacetic acid (CDTA) is usually added to the buffer solution to complex aluminum and thereby prevent its interference. If fluoroborate ion is present, the sample should be distilled from a concentrated sulfuric acid solution to hydrolyze the fluoroborate to free fluoride prior to the electrode measurement (26,27). [Pg.231]

A more difficult criterion to meet with flow markers is that the polymer samples not contain interferents that coelute with or very near the flow marker and either affect its retention time or the ability of the analyst to reproducibly identify the retention time of the peak. Water is a ubiquitous problem in nonaqueous GPC and, when using a refractive index detector, it can cause a variable magnitude, negative area peak that may coelute with certain choices of totally permeated flow markers. This variable area negative peak may alter the apparent position of the flow marker when the flow rate has actually been invariant, thereby causing the user to falsely adjust data to compensate for the flow error. Similar problems can occur with the elution of positive peaks that are not exactly identical in elution to the totally permeated flow marker. Species that often contribute to these problems are residual monomer, reactants, surfactants, by-products, or buffers from the synthesis of the polymer. [Pg.549]

Solochrome dark blue or calcon ( C.1.15705). This is sometimes referred to as eriochrome blue black RC it is in fact sodium l-(2-hydroxy-l-naphthylazo)-2-naphthol-4-sulphonate. The dyestuff has two ionisable phenolic hydrogen atoms the protons ionise stepwise with pK values of 7.4 and 13.5 respectively. An important application of the indicator is in the complexometric titration of calcium in the presence of magnesium this must be carried out at a pH of about 12.3 (obtained, for example, with a diethylamine buffer 5 mL for every 100 mL of solution) in order to avoid the interference of magnesium. Under these conditions magnesium is precipitated quantitatively as the hydroxide. The colour change is from pink to pure blue. [Pg.318]

Discussion. Minute amounts of beryllium may be readily determined spectrophotometrically by reaction under alkaline conditions with 4-nitrobenzeneazo-orcinol. The reagent is yellow in a basic medium in the presence of beryllium the colour changes to reddish-brown. The zone of optimum alkalinity is rather critical and narrow buffering with boric acid increases the reproducibility. Aluminium, up to about 240 mg per 25 mL, has little influence provided an excess of 1 mole of sodium hydroxide is added for each mole of aluminium present. Other elements which might interfere are removed by preliminary treatment with sodium hydroxide solution, but the possible co-precipitation of beryllium must be considered. Zinc interferes very slightly but can be removed by precipitation as sulphide. Copper interferes seriously, even in such small amounts as are soluble in sodium hydroxide solution. The interference of small amounts of copper, nickel, iron and calcium can be prevented by complexing with EDTA and triethanolamine. [Pg.683]

The reaction is a sensitive one, but is subject to a number of interferences. The solution must be free from large amounts of lead, thallium (I), copper, tin, arsenic, antimony, gold, silver, platinum, and palladium, and from elements in sufficient quantity to colour the solution, e.g. nickel. Metals giving insoluble iodides must be absent, or present in amounts not yielding a precipitate. Substances which liberate iodine from potassium iodide interfere, for example iron(III) the latter should be reduced with sulphurous acid and the excess of gas boiled off, or by a 30 per cent solution of hypophosphorous acid. Chloride ion reduces the intensity of the bismuth colour. Separation of bismuth from copper can be effected by extraction of the bismuth as dithizonate by treatment in ammoniacal potassium cyanide solution with a 0.1 per cent solution of dithizone in chloroform if lead is present, shaking of the chloroform solution of lead and bismuth dithizonates with a buffer solution of pH 3.4 results in the lead alone passing into the aqueous phase. The bismuth complex is soluble in a pentan-l-ol-ethyl acetate mixture, and this fact can be utilised for the determination in the presence of coloured ions, such as nickel, cobalt, chromium, and uranium. [Pg.684]

The procedure utilises eriochrome blue black RC (also called pontachrome blue black R Colour Index No. 15705) at a pH of 4,8 in a buffer solution. Beryllium gives no fluorescence and does not interfere iron, chromium, copper, nickel, and cobalt mask the fluorescence fluoride must be removed if present. The method may be adapted for the determination of aluminium in steel. [Pg.737]

The determination of magnesium in potable water is very straightforward very few interferences are encountered when using an acetylene-air flame. The determination of calcium is however more complicated many chemical interferences are encountered in the acetylene-air flame and the use of releasing agents such as strontium chloride, lanthanum chloride, or EDTA is necessary. Using the hotter acetylene-nitrous oxide flame the only significant interference arises from the ionisation of calcium, and under these conditions an ionisation buffer such as potassium chloride is added to the test solutions. [Pg.804]

Figure 8. Simultaneous measurement of intracellular Ca and oxidant production in neutrophils. Cells were labeled with Quin-2 and suspended at 2 x lo cells/mL buffer. At time zero, 1 nJf FLPEP was added (upper trace in each panel). In addition, the receptor blocker tBOC was added (3 x 10" M) after 30 s to stop further binding of the stimulus (lower trace in each panel). The excitation wavelength was 3A0 nm. Top panel Quin-2 fluorescence determined on channel B (of Figure 1) using a Corion A90-nm interference filter. The crossover from the superoxide assay has been subtracted. Middle panel Oxidant production (superoxide equivalents) determined by the para-hydroxyphenylacetate assay. Fluorescence was observed at AOO nm (on channel A of Figure 1). Figure 8. Simultaneous measurement of intracellular Ca and oxidant production in neutrophils. Cells were labeled with Quin-2 and suspended at 2 x lo cells/mL buffer. At time zero, 1 nJf FLPEP was added (upper trace in each panel). In addition, the receptor blocker tBOC was added (3 x 10" M) after 30 s to stop further binding of the stimulus (lower trace in each panel). The excitation wavelength was 3A0 nm. Top panel Quin-2 fluorescence determined on channel B (of Figure 1) using a Corion A90-nm interference filter. The crossover from the superoxide assay has been subtracted. Middle panel Oxidant production (superoxide equivalents) determined by the para-hydroxyphenylacetate assay. Fluorescence was observed at AOO nm (on channel A of Figure 1).
Figure 9. Increase of intracellular Ca stimulated by various HCH isomers. Cells were labeled with lndo-1 and suspended at 2 X 10 cells/mL buffer at 37°C. The HCH isomers were dissolved in DMSO and added to the cell suspensions such that the final HCH concentration was 260 pff and the final DMSO concentation was 0.25% (v/v). The various isomers are indicated in the plot. The control is DMSO alone. The data are plotted as the ratio of fluorescence at 400 nm (measured on channel A) to that at 490 nm (measured through a Corion 490-nm interference filter on channel B). Figure 9. Increase of intracellular Ca stimulated by various HCH isomers. Cells were labeled with lndo-1 and suspended at 2 X 10 cells/mL buffer at 37°C. The HCH isomers were dissolved in DMSO and added to the cell suspensions such that the final HCH concentration was 260 pff and the final DMSO concentation was 0.25% (v/v). The various isomers are indicated in the plot. The control is DMSO alone. The data are plotted as the ratio of fluorescence at 400 nm (measured on channel A) to that at 490 nm (measured through a Corion 490-nm interference filter on channel B).
Figure 2. The spectral analysis of light collected by the fiber placed in a pH=7 phosphate-buffered distilled water sample. The spectriun shows the important interferences which must be eliminated to relate the fluorescence intensity to concentration. Figure 2. The spectral analysis of light collected by the fiber placed in a pH=7 phosphate-buffered distilled water sample. The spectriun shows the important interferences which must be eliminated to relate the fluorescence intensity to concentration.
Avdeef and Bucher [24] investigated the use of universal buffers in potentiomet-ric titrations. Recently, such a buffer system, formulated with several of the Good components, has been designed specifically for robotic applications, where automated pH control in 96-well microtiter plates is required, with minimal interference to the UV measurement [48]. This universal buffer has a nearly perfectly linear pH response to additions of standard titrant in the pH 3-10 region [8, 48]. [Pg.62]

The most critical decision to be made is the choice of the best solvent to facilitate extraction of the drug residue while minimizing interference. A review of available solubility, logP, and pK /pKb data for the marker residue can become an important first step in the selection of the best extraction solvents to try. A selected list of solvents from the literature methods include individual solvents (n-hexane, " dichloromethane, ethyl acetate, acetone, acetonitrile, methanol, and water ) mixtures of solvents (dichloromethane-methanol-acetic acid, isooctane-ethyl acetate, methanol-water, and acetonitrile-water ), and aqueous buffer solutions (phosphate and sodium sulfate ). Hexane is a very nonpolar solvent and could be chosen as an extraction solvent if the analyte is also very nonpolar. For example, Serrano et al used n-hexane to extract the very nonpolar polychlorinated biphenyls (PCBs) from fat, liver, and kidney of whale. One advantage of using n-hexane as an extraction solvent for fat tissue is that the fat itself will be completely dissolved, but this will necessitate an additional cleanup step to remove the substantial fat matrix. The choice of chlorinated hydrocarbons such as methylene chloride, chloroform, and carbon tetrachloride should be avoided owing to safety and environmental concerns with these solvents. Diethyl ether and ethyl acetate are other relatively nonpolar solvents that are appropriate for extraction of nonpolar analytes. Diethyl ether or ethyl acetate may also be combined with hexane (or other hydrocarbon solvent) to create an extraction solvent that has a polarity intermediate between the two solvents. For example, Gerhardt et a/. used a combination of isooctane and ethyl acetate for the extraction of several ionophores from various animal tissues. [Pg.305]


See other pages where Interferences buffers is mentioned: [Pg.64]    [Pg.62]    [Pg.64]    [Pg.62]    [Pg.211]    [Pg.54]    [Pg.290]    [Pg.134]    [Pg.230]    [Pg.462]    [Pg.378]    [Pg.71]    [Pg.117]    [Pg.377]    [Pg.24]    [Pg.569]    [Pg.356]    [Pg.475]    [Pg.320]    [Pg.438]    [Pg.572]    [Pg.586]    [Pg.655]    [Pg.692]    [Pg.704]    [Pg.354]    [Pg.254]    [Pg.103]    [Pg.231]    [Pg.236]    [Pg.187]    [Pg.51]    [Pg.339]    [Pg.664]    [Pg.62]    [Pg.315]   
See also in sourсe #XX -- [ Pg.172 ]




SEARCH



© 2024 chempedia.info