Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Interference summarized

Because the higher alcohols are made by a number of processes and from different raw materials, analytical procedures are designed to yield three kinds of information the carbon chain length distribution, or combining weight, of the alcohols present the purity of the material and the presence of minor impurities and contaminants that would interfere with subsequent use of the product. Analytical methods and characterization of alcohols have been summarized (13). [Pg.443]

Table 1 shows that the physicochemical properties of the support material were modified by the pre-treatment process. The particle sizes. Dp, which are summarized in the Table 1 were calculated from the X-ray diffraction patterns of prepared catalysts and a commercial catalyst(30 wt% Pt-Ru/C E-TEK) by using Scherrer s equation. To avoid the interference from other peaks, (220) peak was used. All the prepared catalysts show the particle sizes of the range from 2.0 to 2.8nm. It can be thought that these values are in the acceptable range for the proper electrode performance[7]. For the prepared catalysts, notable differences are inter-metal distances(X[nm]) compared to commercial one. Due to their larger surface areas of support materials, active metals are apart from each other more than 2 3 times distance than commercial catalyst. Pt-Ru/SRaw has the longest inter-metal distances. [Pg.638]

Hematological Effects. Lead has long been known to have profound effects on heme synthesis. The impairment of heme synthesis has a far-ranging impact not limited to the hematopoietic system. EPA (1986a) summarized the known and potential consequences of the reduction of heme synthesis as shown in Figure 2-11. The mechanisms by which lead interferes with heme synthesis are discussed in Section 2.4.2. [Pg.284]

If it were possible to identify or quantitatively determine any element or compound by simple measurement no matter what its concentration or the complexity of the matrix, separation techniques would be of no value to the analytical chemist. Most procedures fall short of this ideal because of interference with the required measurement by other constituents of the sample. Many techniques for separating and concentrating the species of interest have thus been devised. Such techniques are aimed at exploiting differences in physico-chemical properties between the various components of a mixture. Volatility, solubility, charge, molecular size, shape and polarity are the most useful in this respect. A change of phase, as occurs during distillation, or the formation of a new phase, as in precipitation, can provide a simple means of isolating a desired component. Usually, however, more complex separation procedures are required for multi-component samples. Most depend on the selective transfer of materials between two immiscible phases. The most widely used techniques and the phase systems associated with them are summarized in Table 4.1. [Pg.48]

Careful analyses of the pharmacologic properties of 3H-hailucinogen binding sites indicated that they may correspond to 5-HT receptors (in the case of 3H-LSD), sigma opiate receptors (in the case of 3H-PCP), or even GABA receptors (in the case of 3H-muscimol). Such data recall that hallucinogens should interfere markedly with the metabolism of neurotransmitters in the CNS. These hallucinogen-induced alterations of neurotransmitter metabolism and functions are summarized below. [Pg.206]

Precipitation titrations are typified by the titration of chloride with silver or vice versa. In this case, interferences with the precipitation reaction may occur because of components in the soil, and the soil itself may interfere with detection of the end point. Thus, complexation reactions are rarely applied directly to soil however, they can be applied to soil extracts. Common environmental titration methods described in the United States Environmental Protection Agency (USEPA) methods are summarized in Table 10.1 [1,2],... [Pg.213]

BV of the eluent. Table 2 summarizes detailed experimental conditions and column performances. Since volumes of the feed supplied to the column were from 145 to 174 BV, percentages of removed arsenate until 140 BV of the feed is listed. These data means that interference by both anions was not serious up to 140 BV of the feed.. [Pg.40]

As a result of slow (thermal) neutron irradiation, a sample composed of stable atoms of a variety of elements will produce several radioactive isotopes of these activated elements. For a nuclear reaction to be useful analytically in the delayed NAA mode the element of interest must be capable of undergoing a nuclear reaction of some sort, the product of which must be radioactively unstable. The daughter nucleus must have a half-life of the order of days or months (so that it can be conveniently measured), and it should emit a particle which has a characteristic energy and is free from interference from other particles which may be produced by other elements within the sample. The induced radioactivity is complex as it comprises a summation of all the active species present. Individual species are identified by computer-aided de-convolution of the data. Parry (1991 42-9) and Glascock (1998) summarize the relevant decay schemes, and Alfassi (1990 3) and Glascock (1991 Table 3) list y ray energy spectra and percentage abundances for a number of isotopes useful in NAA. [Pg.126]

When r s, one has interconversion between operators Br and Bs, and Rrs is a cross-relaxation rate. Note that the cross-relaxation may or may not contain interference effects depending on the indices l and /, which keep track of interactions Cyj and C,. Cross-correlation rates and cross-relaxation rates have not been fully utilized in LC. However, there is a recent report41 on this subject using both the 13C chemical shielding anisotropy and C-H dipolar coupling relaxation mechanisms to study a nematic, and this may be a fruitful arena in gaining dynamic information for LC. We summarize below some well known (auto-)relaxation rates for various spin interactions commonly encountered in LC studies. [Pg.78]

This is a case where another electrochemical technique, double potential step chronoamperometry, is more convenient than cyclic voltammetry in the sense that conditions may be defined in which the anodic response is only a function of the rate of the follow-up reaction, with no interference from the electron transfer step. The procedure to be followed is summarized in Figure 2.7. The inversion potential is chosen (Figure 2.7a) well beyond the cyclic voltammetric reduction peak so as to ensure that the condition (Ca) c=0 = 0 is fulfilled whatever the slowness of the electron transfer step. Similarly, the final potential (which is the same as the initial potential) is selected so as to ensure that Cb)x=0 = 0 at the end of the second potential step whatever the rate of electron transfer. The chronoamperometric response is recorded (Figure 2.7b). Figure 2.7c shows the variation of the ratio of the anodic-to-cathodic current for 2tR and tR, recast as Rdps, with the dimensionless parameter, 2, measuring the competition between diffusion and follow-up reaction (see Section 6.2.3) ... [Pg.91]

As with the other reaction schemes involving the coupling of electron transfer with a follow-up homogeneous reaction, the kinetics of electron transfer may interfere in the rate control of the overall process, similar to what was described earlier for the EC mechanism. Under these conditions a convenient way of obtaining the rate constant for the follow-up reaction with no interference from the electron transfer kinetics is to use double potential chronoamperometry in place of cyclic voltammetry. The variations of normalized anodic-to-cathodic current ratio with the dimensionless rate parameter are summarized in Figure 2.15 for all four electrodimerization mechanisms. [Pg.106]

Triolein is also examined for potential analytical interferences and contaminant residues before use in SPMDs. Generally, the triolein used for fabrication of SPMDs is purified and its purity subsequently verified by GC or GC-MS methods. This purification process has been described in detail previously (Lebo et al., 2004) and is summarized in Section 5.4. [Pg.88]

Summarizing, the Avesta cell is a flexible and convenient device for measuring pitting corrosion without interference from crevice corrosion. [Pg.289]


See other pages where Interference summarized is mentioned: [Pg.70]    [Pg.70]    [Pg.239]    [Pg.107]    [Pg.114]    [Pg.516]    [Pg.281]    [Pg.356]    [Pg.117]    [Pg.150]    [Pg.311]    [Pg.772]    [Pg.395]    [Pg.210]    [Pg.344]    [Pg.87]    [Pg.178]    [Pg.148]    [Pg.463]    [Pg.195]    [Pg.173]    [Pg.211]    [Pg.441]    [Pg.98]    [Pg.53]    [Pg.507]    [Pg.331]    [Pg.46]    [Pg.184]    [Pg.27]    [Pg.343]    [Pg.42]    [Pg.39]    [Pg.178]    [Pg.135]    [Pg.185]    [Pg.413]    [Pg.265]    [Pg.150]   
See also in sourсe #XX -- [ Pg.198 ]




SEARCH



Summar

© 2024 chempedia.info