Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Interface stretching

There is a second long interface stretching between the threefold and fourfold axes, involving both hydrophobic and hydrophilic interactions. Close to the threefold axis is an intersubunit salt bridge between Asp-139 of subunit I and His-128 in III, which links the N-terminal end of helix D (III) to a position near the kink in helix D (I). Further along the interface, N-terminal residues 6-12 of subunit III make several interactions with the C-helix of subunit I, including several which are mediated... [Pg.180]

Figure 1.24 Evolution of the flow pattern and corresponding interface stretching as a function of dimensionless time [96] (by courtesy of Elsevier Ltd.). Figure 1.24 Evolution of the flow pattern and corresponding interface stretching as a function of dimensionless time [96] (by courtesy of Elsevier Ltd.).
Figure 1.148 Interface stretching factor vs. element number for different Dean numbers ( ) K = 10 (A) K = 100 ( ) K = 200 [47],... Figure 1.148 Interface stretching factor vs. element number for different Dean numbers ( ) K = 10 (A) K = 100 ( ) K = 200 [47],...
Lamella Division. Lamella or bubble division proceeds by subdividing foam bubbles or lamellae. Thus, mobile foam bubbles must preexist. Division is illustrated in Figure 6. A translating foam bubble encounters a point where flow branches in two directions (Figure 6a). The interface stretches around the branch point and enters both flow paths. The initial bubble divides into two separate bubbles (Figure 6b) that continue to move downstream. [Pg.136]

Figure 4.16 Interface stretching factor in meander mixer as function of the number of loops and Dean number [28]. (Adapted with permission from Wiley.)... Figure 4.16 Interface stretching factor in meander mixer as function of the number of loops and Dean number [28]. (Adapted with permission from Wiley.)...
The external reflection of infrared radiation can be used to characterize the thickness and orientation of adsorbates on metal surfaces. Buontempo and Rice [153-155] have recently extended this technique to molecules at dielectric surfaces, including Langmuir monolayers at the air-water interface. Analysis of the dichroic ratio, the ratio of reflectivity parallel to the plane of incidence (p-polarization) to that perpendicular to it (.r-polarization) allows evaluation of the molecular orientation in terms of a tilt angle and rotation around the backbone [153]. An example of the p-polarized reflection spectrum for stearyl alcohol is shown in Fig. IV-13. Unfortunately, quantitative analysis of the experimental measurements of the antisymmetric CH2 stretch for heneicosanol [153,155] stearly alcohol [154] and tetracosanoic [156] monolayers is made difflcult by the scatter in the IR peak heights. [Pg.127]

The equations of electrocapillarity become complicated in the case of the solid metal-electrolyte interface. The problem is that the work spent in a differential stretching of the interface is not equal to that in forming an infinitesimal amount of new surface, if the surface is under elastic strain. Couchman and co-workers [142, 143] and Mobliner and Beck [144] have, among others, discussed the thermodynamics of the situation, including some of the problems of terminology. [Pg.202]

Figure Bl.5.15 SFG spectrum for the water/air interface at 40 °C using the ssp polarization combination (s-, s- and p-polarized sum-frequency signal, visible input and infrared input beams, respectively). The peaks correspond to OH stretching modes. (After [ ].)... Figure Bl.5.15 SFG spectrum for the water/air interface at 40 °C using the ssp polarization combination (s-, s- and p-polarized sum-frequency signal, visible input and infrared input beams, respectively). The peaks correspond to OH stretching modes. (After [ ].)...
Figure Bl.22.8. Sum-frequency generation (SFG) spectra in the C N stretching region from the air/aqueous acetonitrile interfaces of two solutions with different concentrations. The solid curve is the IR transmission spectrum of neat bulk CH CN, provided here for reference. The polar acetonitrile molecules adopt a specific orientation in the air/water interface with a tilt angle that changes with changing concentration, from 40° from the surface nonnal in dilute solutions (molar fractions less than 0.07) to 70° at higher concentrations. This change is manifested here by the shift in the C N stretching frequency seen by SFG [ ]. SFG is one of the very few teclnhques capable of probing liquid/gas, liquid/liquid, and even liquid/solid interfaces. Figure Bl.22.8. Sum-frequency generation (SFG) spectra in the C N stretching region from the air/aqueous acetonitrile interfaces of two solutions with different concentrations. The solid curve is the IR transmission spectrum of neat bulk CH CN, provided here for reference. The polar acetonitrile molecules adopt a specific orientation in the air/water interface with a tilt angle that changes with changing concentration, from 40° from the surface nonnal in dilute solutions (molar fractions less than 0.07) to 70° at higher concentrations. This change is manifested here by the shift in the C N stretching frequency seen by SFG [ ]. SFG is one of the very few teclnhques capable of probing liquid/gas, liquid/liquid, and even liquid/solid interfaces.
The dynamics of fast processes such as electron and energy transfers and vibrational and electronic deexcitations can be probed by using short-pulsed lasers. The experimental developments that have made possible the direct probing of molecular dissociation steps and other ultrafast processes in real time (in the femtosecond time range) have, in a few cases, been extended to the study of surface phenomena. For instance, two-photon photoemission has been used to study the dynamics of electrons at interfaces [ ]. Vibrational relaxation times have also been measured for a number of modes such as the 0-Fl stretching m silica and the C-0 stretching in carbon monoxide adsorbed on transition metals [ ]. Pump-probe laser experiments such as these are difficult, but the field is still in its infancy, and much is expected in this direction m the near fiitiire. [Pg.1790]

Prepare a saturated solution of sodium sulphide, preferably from the fused technical sodium polysulphide, and saturate it with sulphur the sulphur content should approximate to that of sodium tetrasulphide. To 50 ml. of the saturated sodium tetrasulphide solution contained in a 500 ml. round-bottomed flask provided with a reflux condenser, add 12 -5 ml. of ethylene dichloride, followed by 1 g. of magnesium oxide to act as catalyst. Heat the mixture until the ethylene dichloride commences to reflux and remove the flame. An exothermic reaction sets in and small particles of Thiokol are formed at the interface between the tetrasulphide solution and the ethylene chloride these float to the surface, agglomerate, and then sink to the bottom of the flask. Decant the hquid, and wash the sohd several times with water. Remove the Thiokol with forceps or tongs and test its rubber-like properties (stretching, etc.). [Pg.1024]

After the skimmer, the ions must be prepared for mass analysis, and electronic lenses in front of the analyzer are used to adjust ion velocities and flight paths. The skimmer can be considered to be the end of the interface region stretching from the end of the plasma flame. Some sort of light stop must be used to prevent emitted light from the plasma reaching the ion collector in the mass analyzer (Figure 14.2). [Pg.95]

Viscoelastic polymers essentially dominate the multi-billion dollar adhesives market, therefore an understanding of their adhesion behavior is very important. Adhesion of these materials involves quite a few chemical and physical phenomena. As with elastic materials, the chemical interactions and affinities in the interface provide the fundamental link for transmission of stress between the contacting bodies. This intrinsic resistance to detachment is usually augmented several folds by dissipation processes available to the viscoelastic media. The dissipation processes can have either a thermodynamic origin such as recoiling of the stretched polymeric chains upon detachment, or a dynamic and rate-sensitive nature as in chain pull-out, chain disentanglement and deformation-related rheological losses in the bulk of materials and in the vicinity of interface. [Pg.122]

The stored strain energy can also be determined for the general case of multiaxial stresses [1] and lattices of varying crystal structure and anisotropy. The latter could be important at interfaces where mode mixing can occur, or for fracture of rubber, where f/ is a function of the three stretch rations 1], A2 and A3, for example, via the Mooney-Rivlin equation, or suitable finite deformation strain energy functional. [Pg.380]

Experimentally, the stretching of block copolymer chains has been addressed in two ways by measuring L as a function of N, and by measuring the components of Rg of the block chains both parallel and perpendicular to the interface. The domain dimensions have been studied most extensively for styrene-isoprene and styrene-butadiene block copolymers X-ray and neutron scattering are the methods of choice. The predicted SSL scaling of L N2/3 has been reported for spheres, cylinders and lamellae [99,102-106], but not in all cases. For example, Bates et al. found N0 37 for styrene-butadiene spheres [100], and Hadziioannou and Skoulios observed N0 79 for styrene-isoprene lamellae [107], In the sphere case, kinetic limitations to equilibration were felt to be an important factor [100],... [Pg.57]


See other pages where Interface stretching is mentioned: [Pg.32]    [Pg.197]    [Pg.197]    [Pg.197]    [Pg.198]    [Pg.201]    [Pg.202]    [Pg.431]    [Pg.131]    [Pg.287]    [Pg.153]    [Pg.145]    [Pg.173]    [Pg.130]    [Pg.776]    [Pg.32]    [Pg.197]    [Pg.197]    [Pg.197]    [Pg.198]    [Pg.201]    [Pg.202]    [Pg.431]    [Pg.131]    [Pg.287]    [Pg.153]    [Pg.145]    [Pg.173]    [Pg.130]    [Pg.776]    [Pg.561]    [Pg.1787]    [Pg.2743]    [Pg.2938]    [Pg.65]    [Pg.195]    [Pg.470]    [Pg.121]    [Pg.236]    [Pg.381]    [Pg.416]    [Pg.647]    [Pg.238]    [Pg.586]    [Pg.828]    [Pg.47]    [Pg.50]    [Pg.56]    [Pg.57]    [Pg.58]   
See also in sourсe #XX -- [ Pg.197 ]

See also in sourсe #XX -- [ Pg.373 ]




SEARCH



© 2024 chempedia.info