Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Interaction, between capacities

High sorption capacities with respect to protein macromolecules are observed when highly permeable macro- and heteroreticular polyelectrolytes (biosorbents) are used. In buffer solutions a typical picture of interaction between ions with opposite charges fixed on CP and counterions in solution is observed. As shown in Fig. 13, in the acid range proteins are not bonded by carboxylic CP because the ionization of their ionogenic groups is suppressed. The amount of bound protein decreases at high pH values of the solution because dipolar ions proteins are transformed into polyanions and electrostatic repulsion is operative. The sorption maximum is either near the isoelectric point of the protein or depends on the ratio of the pi of the protein to the pKa=0 5 of the carboxylic polyelectrolyte [63]. It should be noted that this picture may be profoundly affected by the mechanism of interaction between CP and dipolar ions similar to that describedby Eq. (3.7). [Pg.22]

The peak capacity is not pertinent as the separation was developed by a solvent program. The expected efficiency of the column when operated at the optimum velocity would be about 5,500 theoretical plates. This is not a particularly high efficiency and so the separation depended heavily on the phases selected and the gradient employed. The separation was achieved by a complex mixture of ionic and dispersive interactions between the solutes and the stationary phase and ionic, polar and dispersive forces between the solutes and the mobile phase. The initial solvent was a 1% acetic acid and 1 mM tetrabutyl ammonium phosphate buffered to a pH of 2.8. Initially the tetrabutyl ammonium salt would be adsorbed strongly on the reverse phase and thus acted as an adsorbed ion exchanger. During the program, acetonitrile was added to the solvent and initially this increased the dispersive interactions between the solute and the mobile phase. [Pg.302]

Fig. 9-3 Conceptual model to describe the interaction between chemical weathering of bedrock and down-slope transport of solid erosion products. It is assumed that chemical weathering is required to generate loose solid erosion products of the bedrock. Solid curve portrays a hypothetical relationship between soil thickness and rate of chemical weathering of bedrock. Dotted lines correspond to different potential transport capacities. Low potential transport capacity is expected on a flat terrain, whereas high transport is expected on steep terrain. For moderate capacity, C and F are equilibrium points. (Modified with permission from R. F. Stallard, River chemistry, geology, geomorphology, and soils in the Amazon and Orinoco basins. In J. I. Drever, ed. (1985), "The Chemistry of Weathering," D. Reidel Publishing Co., Dordrecht, The Netherlands.)... Fig. 9-3 Conceptual model to describe the interaction between chemical weathering of bedrock and down-slope transport of solid erosion products. It is assumed that chemical weathering is required to generate loose solid erosion products of the bedrock. Solid curve portrays a hypothetical relationship between soil thickness and rate of chemical weathering of bedrock. Dotted lines correspond to different potential transport capacities. Low potential transport capacity is expected on a flat terrain, whereas high transport is expected on steep terrain. For moderate capacity, C and F are equilibrium points. (Modified with permission from R. F. Stallard, River chemistry, geology, geomorphology, and soils in the Amazon and Orinoco basins. In J. I. Drever, ed. (1985), "The Chemistry of Weathering," D. Reidel Publishing Co., Dordrecht, The Netherlands.)...
To complete the discussion of the second-order interaction between tunneling centers, we note that the corresponding contribution to the heat capacity in the leading low T term comes from the ripplon-TLS term and scales as 7 +2 where a is the anomalous exponent of the specific law. Within the approximation adopted in this section, a = 0. However, it is easily seen that the magnitude of the interaction-induced specific heat is down from the two-level system value by a factor of 10(a/ ) ([Pg.188]

Dietary consumption of polyphenols is associated with a lower risk of degenerative diseases. In particular, protection of serum lipids from oxidation, which is a major step in the development of arteriosclerosis, has been demonstrated. More recently, new avenues have been explored in the capacity of polyphenols to interact with the expression of the human genetic potential. The understanding of the interaction between this heterogeneous class of compounds and cellular responses, due either to their ability to interplay in the cellular antioxidant network or directly to affect gene expression, has increased. [Pg.13]

Some advice can be formulated for the choice of organic modifier, (i) Acetonitrile as an aprotic solvent cannot interact with residual silanols, whereas the protic methanol can. Thus, when measuring retention factors, methanol is the cosolvent of choice, as it reduces the secondary interactions between the solutes and the free silanol groups, (ii) For the study of the performance of new stationary phases one should use acetonitrile, as the effects of free silanol groups are fuUy expressed [35]. (iri) Acetonitrile with its better elution capacity can be considered as the best organic modifier for Hpophilicity measurements of highly Hpophihc compounds with adequate stationary phases [36]. [Pg.337]

The high sensitivity of the sensors makes it possible to use low-capacity sensors of active particles that feature selective generation in the study of heterogeneous processes. Thus, we are in a position to eliminate the influence of gaseous phase on the surface properties and to study in succession the interaction between the surface and certain constituents of an excited gaseous phase. [Pg.342]


See other pages where Interaction, between capacities is mentioned: [Pg.1875]    [Pg.413]    [Pg.107]    [Pg.1505]    [Pg.17]    [Pg.236]    [Pg.231]    [Pg.259]    [Pg.12]    [Pg.163]    [Pg.262]    [Pg.4]    [Pg.263]    [Pg.865]    [Pg.115]    [Pg.283]    [Pg.304]    [Pg.107]    [Pg.86]    [Pg.147]    [Pg.196]    [Pg.476]    [Pg.44]    [Pg.102]    [Pg.177]    [Pg.156]    [Pg.330]    [Pg.278]    [Pg.31]    [Pg.110]    [Pg.48]    [Pg.79]    [Pg.125]    [Pg.308]    [Pg.438]    [Pg.300]    [Pg.175]    [Pg.195]    [Pg.723]    [Pg.727]    [Pg.230]    [Pg.75]    [Pg.175]   
See also in sourсe #XX -- [ Pg.38 , Pg.41 ]




SEARCH



Interaction capacities

© 2024 chempedia.info