Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Inosinate synthesis

It was not until 1953 that Goldwasser (9) and Williams and Buchanan (10) showed that purine bases could be converted to ribonucleotides by a one-step process, without the intermediate formation of ribonucleosides. The source of the ribose phosphate moiety was discovered in 1955 to be PP-ribose-P in the course of studies of adenylate synthesis by Kornberg et al. 11), and of inosinate synthesis by Korn et al. 12) extracts of yeast, beef liver, and pigeon liver were employed. The enzymes involved were at first called nucleotide pyrophosphorylases, but are now known as purine phosphoribosyltransferases. The general reaction is... [Pg.126]

Adenosine is not active orally, but adrninistered as an iv bolus dmg adenosine rapidly eliminates supraventricular tachycardias within 1—2 min after dosing. The dmg slows conduction through the AV node. Adenosine is rapidly removed from the circulation by uptake into red blood ceUs and vascular endothehal ceUs. Thus the plasma half-life is less than 10 s. Adenosine is rapidly metabolized to inosine or adenosine monophosphate and becomes part of the body pool for synthesis of adenosine-triphosphate. [Pg.120]

Inosine, 6-benzyloxy-9- -D-ribofuranosyl-2-dimethylamino-hydrogenolysis, 5, 558 Inosine, 2 -deoxy-alkylation, 5, 538 Inosine, 6-phenacylthio-dethiation, S, 559 Inosine 5 -monophosphate biosynthesis, 1, 88 Inosines, thio-synthesis, 5, 584 Inositol, D-l,4-anhydro-synthesis, 1, 416 Inositols synthesis, 1, 416 Insecticides... [Pg.674]

Inosine monophosphate dehydrogenase (EVDPDH) is a key enzyme of purine nucleotide biosynthesis. Purine synthesis in lymphocytes exclusively depends on the de novo synthesis, whereas other cells can generate purines via the so-called salvage pathway. Therefore, IMPDH inhibitors preferentially suppress DNA synthesis in activated lymphocytes. [Pg.619]

Inosine monophosphate dehydrogenase (IMPDH) is the key enzyme of purine nucleotide biosynthesis. Proliferation of activated lymphocytes dq ends on rapid de novo production of purine nucleotides for DNA synthesis. [Pg.622]

Mycophenolate mofetil was approved by the FDA in 1995, and enteric-coated mycophenolic acid was approved in 2004. Both agents are considered to be adjunctive immunosuppressants. Mycophenolic acid acts by inhibiting inosine monophosphate deydrogenase, a vital enzyme in the de novo pathway of purine synthesis. Inhibition of this enzyme prevents the proliferation of most cells that are dependent on the de novo pathway for purine synthesis, including T cells.7,11,26-28... [Pg.840]

The synthesis of inosinic acid (123) from AIR (106) using soluble avian liver enzymes has been shown to proceed in several steps. The first step involves the formation of C-AIR (107) by carboxylation of the aminoimid-azole (106) (Scheme 15) (57JA1511). [Pg.33]

AZT works by specifically blocking DNA synthesis carried out by HIV reverse transcriptase. Other related compounds are also being tested to see if they specifically affect HIV reverse transcriptase. Such compounds might have equivalent antiviral effects. If they have fewer side effects than AZT, they may be even more effective in treating HIV-infected individuals. Two additional antivirals related to AZT have recently been approved for anti-HIV therapy, dideoxy-inosine (DDI) and dideoxycytosine (DDC). These drugs are predominantly recommended for individuals who cannot tolerate AZT, or for whom AZT has ceased to be effective although they are effective against HIV, they do have side effects. Nevertheless, they may be important because AZT does not indefinitely reduce the amount of virus in HIV-infected individuals. [Pg.235]

Within a cell, a nncleotidase catalyses the hydrolysis of either a ribonncleotide or deoxyribonucleotide (Fignre 10.8). The qnantitatively important pathway for degradation of AMP in liver and mnscle involves deamination to IMP, catalysed by AMP deaminase, producing ammonia, and snbseqnent hydrolysis of IMP to inosine. This may be an important sonrce of inosine for synthesis of phosphati-dylinositol, a key phospholipid in membranes. [Pg.218]

Figure 20.8 Summary of pathways for de novo synthesis of purine and pyrimidine nucleotides. C represents transfer of a single carbon atom (a one-carbon transfer). Details are provided in Appendix 20.1. IMP - inosine monophosphate. For thymi-dylate synthesis, see Figure 20.12a. Figure 20.8 Summary of pathways for de novo synthesis of purine and pyrimidine nucleotides. C represents transfer of a single carbon atom (a one-carbon transfer). Details are provided in Appendix 20.1. IMP - inosine monophosphate. For thymi-dylate synthesis, see Figure 20.12a.
In the purine nucleotide pathway, the purine nucleotide is synthesised upon the phosphoribose using several small molecules. The first purine nucleotide formed is inosine monophosphate (IMP) it is an intermediate on the pathway for the synthesis of both adenine and guanine nucleotides (Figure 20.8). [Pg.456]

Mycophenolate sodium (62 Myfortic Norvatis, 2003) is an immunosuppressant drug used to prevent rejection in organ transplantation. It is a selective, noncompetitive, reversible inhibitor of inosine monophosphate dehydrogenase (IMPDH), the rate-limiting enzyme in the de novo pathway of guanosine nucleotide synthesis. Thus, mycophenolic acid (61), originally... [Pg.60]

The de novo synthesis of inosinic acid The salvage pathways Purine nucleotide interconversions Other enzymes... [Pg.69]

Mycophenolate mofetil has a more specific effect on lymphocytes than on other cells. It inhibits inosine monophosphate dehydrogenase, which catalyzes purine synthesis in lymphocytes. It is used in acute tissue rejection responses. [Pg.300]

The major intermediates in the biosynthesis of nucleic acid components are the mononucleotides uridine monophosphate (UMP) in the pyrimidine series and inosine monophosphate (IMP, base hypoxanthine) in the purines. The synthetic pathways for pyrimidines and purines are fundamentally different. For the pyrimidines, the pyrimidine ring is first constructed and then linked to ribose 5 -phosphate to form a nucleotide. By contrast, synthesis of the purines starts directly from ribose 5 -phosphate. The ring is then built up step by step on this carrier molecule. [Pg.188]

In the body, mercaptopurine is converted into an active form of the drug, nucleotide 6-thioinosin-5-phosphate. Nucleotide 6-thioinosin-5-phosphate inhibits the first step in the synthesis of inosin-5-phosphate by negative feedback, preventing its transformation to adenosine or guanine nucleotides, which are necessary for synthesizing DNA. Thus,... [Pg.392]

Figure 10-1. Overview of purine synthesis. Details of the first two reactions and sources of the atoms of the purine ring in inosine 5 -monophosphate (IMP) are shown. PRPP, 5 -phosphoribosyl-1-pyrophosphate Gin, glutamine Gly, glycine Asp, aspartate THF, tetrahydrofolate. Figure 10-1. Overview of purine synthesis. Details of the first two reactions and sources of the atoms of the purine ring in inosine 5 -monophosphate (IMP) are shown. PRPP, 5 -phosphoribosyl-1-pyrophosphate Gin, glutamine Gly, glycine Asp, aspartate THF, tetrahydrofolate.
Figure 10-2. Regulation of purine synthesis by the nucleotides and the intermediate, 5 -phosphoribosyl-1 -pyrophosphate (PRPP). Both feedback and feed-forward mechanisms are utilized in this intricate scheme. IMP, inosine monophosphate. Figure 10-2. Regulation of purine synthesis by the nucleotides and the intermediate, 5 -phosphoribosyl-1 -pyrophosphate (PRPP). Both feedback and feed-forward mechanisms are utilized in this intricate scheme. IMP, inosine monophosphate.
Mycophenolate mofetil is used together with cyclosporine and corticosteroids for the prophylaxis of acute organ rejection in patients undergoing allogeneic renal, or hepatic transplants. Compared with azathioprine it is more lymphocyte-specific and is associated with less bone marrow suppression, fewer opportunistic infections and lower incidence of acute rejection. More recently, the salt mycophenolate sodium has also been introduced. Mycophenolate mofetil is rapidly hydrolyzed to mycopheno-lic acid, its active metabolite. Mycophenolic acid is a reversible noncompetitive inhibitor of inosine monophosphate dehydrogenase, an important enzyme for the de novo synthesis of purines. As lymphocytes have little or no salvage pathway for purine... [Pg.467]

Mycophenolate mofetil (MMF, CellCept) is an ester prodrug of mycophenolic acid (MPA), a Penicillium-de-rived immunosuppressive agent (see Chapter 57) that blocks de novo purine synthesis by noncompetitively inhibiting the enzyme inosine monophosphate dehydrogenase. MPA preferentially suppresses the proliferation of cells, such as T and B lymphocytes, that lack the purine salvage pathway and must synthesize de novo... [Pg.493]

With over-expressed fluorinase and under optimised reaction conditions, a synthesis of [ F]-FDA 5d from [ F]-fluoride was achieved in a radiochemical yield (RCY) of 95%. Also in coupled enzyme systems, where the fluorinase is coincubated with other enzymes, the syntheses of [ F]-5 -fluoro-5 -deoxy-inosine... [Pg.775]

Mechanism of Action An immunologic agent that suppresses the immunologically mediated inflammatory response by inhibiting inosine monophosphate dehydrogenase, an enzyme that deprives lymphocytes of nucleotides necessary for DNA and RNA synthesis, thus inhibiting the proliferation of T and B lymphocytes. Therapeutic Effect Prevents transplant rejection. [Pg.830]

Unlike these nonspecific agents, mycophenolate mofetil (6.4) tends to be a lymphocyte-specific cytotoxic agent. Mycophenolate mofetil is a semisynthetic derivative of mycophe-nolic acid, isolated from the mold Penicillium glaucum. It inhibits both T and B lymphocyte action. Since it inhibits the enzyme inosine monophosphate dehydrogenase, which catalyses purine synthesis in lymphocytes, this agent has a more specific effect on lymphocytes than on other cell types. Mizoribine (6.5) is a closely related drug which inhibits nucleotide synthesis, preferentially in lymphocytes. [Pg.394]


See other pages where Inosinate synthesis is mentioned: [Pg.111]    [Pg.136]    [Pg.141]    [Pg.141]    [Pg.264]    [Pg.111]    [Pg.136]    [Pg.141]    [Pg.141]    [Pg.264]    [Pg.118]    [Pg.122]    [Pg.674]    [Pg.674]    [Pg.387]    [Pg.137]    [Pg.149]    [Pg.277]    [Pg.200]    [Pg.148]    [Pg.41]    [Pg.298]    [Pg.294]    [Pg.70]    [Pg.14]    [Pg.335]    [Pg.544]    [Pg.92]    [Pg.93]    [Pg.188]    [Pg.644]    [Pg.450]   
See also in sourсe #XX -- [ Pg.714 , Pg.716 , Pg.716 , Pg.717 ]




SEARCH



Adenylosuccinate synthesis from inosinate

Guanylate synthesis from inosinate

Inosin

Inosinate

Inosine 5 - , enzymic synthesis

Inosine monophosphate purine synthesis

Inosine monophosphate synthesis

Inosine synthesis

Inosinic acid synthesis

© 2024 chempedia.info