Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Conditional moment closures inhomogeneous flow

The procedure followed above can be used to develop a multi-environment conditional LES model starting from (5.396). In this case, all terms in (5.399) will be conditioned on the filtered velocity and filtered compositions,166 in addition to the residual mixture-fraction vector = - . In the case of a one-component mixture fraction, the latter can be modeled by a presumed beta PDF with mean f and variance (f,2>. LES transport equations must then be added to solve for the mixture-fraction mean and variance. Despite this added complication, all model terms carry over from the original model. The only remaining difficulty is to extend (5.399) to cover inhomogeneous flows.167 As with the conditional-moment closure discussed in Section 5.8 (see (5.316) on p. 215), this extension will be non-trivial, and thus is not attempted here. [Pg.258]

In (5.297), the interpolation parameter is defined separately for each component. Note, however, that unlike the earlier examples, there is no guarantee that the interpolation parameters will be bounded between zero and one. For example, the equilibrium concentration of intermediate species may be negligible despite the fact that these species can be abundant in flows dominated by finite-rate chemistry. Thus, although (5.297) provides a convenient closure for the chemical source term, it is by no means guaranteed to produce accurate predictions A more reliable method for determining the conditional moments is the formulation of a transport equation that depends explicitly on turbulent transport and chemical reactions. We will look at this method for both homogeneous and inhomogeneous flows below. [Pg.230]

As compared with the other closures discussed in this chapter, computation studies based on the presumed conditional PDF are relatively rare in the literature. This is most likely because of the difficulties of deriving and solving conditional moment equations such as (5.399). Nevertheless, for chemical systems that can exhibit multiple reaction branches for the same value of the mixture fraction,162 these methods may offer an attractive alternative to more complex models (such as transported PDF methods). Further research to extend multi-environment conditional PDF models to inhomogeneous flows should thus be pursued. [Pg.255]


See other pages where Conditional moment closures inhomogeneous flow is mentioned: [Pg.234]    [Pg.215]    [Pg.145]    [Pg.172]   
See also in sourсe #XX -- [ Pg.214 , Pg.216 ]

See also in sourсe #XX -- [ Pg.214 , Pg.215 ]




SEARCH



Conditional moment closures

Flow Conditions

Inhomogeneity

Inhomogeneous flows

Inhomogenities

Moment closures

© 2024 chempedia.info