Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Micromixing models inhomogeneous flows

In general, liquid-phase reactions (Sc > 1) and fast chemistry are beyond the range of DNS. The treatment of inhomogeneous flows (e.g., a chemical reactor) adds further restrictions. Thus, although DNS is a valuable tool for studying fundamentals,4 it is not a useful tool for chemical-reactor modeling. Nonetheless, much can be learned about scalar transport in turbulent flows from DNS. For example, valuable information about the effect of molecular diffusion on the joint scalar PDF can be easily extracted from a DNS simulation and used to validate the micromixing closures needed in other scalar transport models. [Pg.123]

As done below for two examples, expressions can also be derived for the scalar variance starting from the model equations. For the homogeneous flow under consideration, micromixing controls the variance decay rate, and thus y can be chosen to agree with a particular model for the scalar dissipation rate. For inhomogeneous flows, the definitions of G and M(n) must be modified to avoid spurious dissipation (Fox 1998). We will discuss the extension of the model to inhomogeneous flows after looking at two simple examples. [Pg.242]

Of all of the methods reviewed thus far in this book, only DNS and the linear-eddy model require no closure for the molecular-diffusion term or the chemical source term in the scalar transport equation. However, we have seen that both methods are computationally expensive for three-dimensional inhomogeneous flows of practical interest. For all of the other methods, closures are needed for either scalar mixing or the chemical source term. For example, classical micromixing models treat chemical reactions exactly, but the fluid dynamics are overly simplified. The extension to multi-scalar presumed PDFs comes the closest to providing a flexible model for inhomogeneous turbulent reacting flows. Nevertheless, the presumed form of the joint scalar PDF in terms of a finite collection of delta functions may be inadequate for complex chemistry. The next step - computing the shape of the joint scalar PDF from its transport equation - comprises transported PDF methods and is discussed in detail in the next chapter. Some of the properties of transported PDF methods are listed here. [Pg.258]

The results from (B.43) can be combined with the multi-environment presumed PDF models to define a new class of micromixing models that agree with the DQMOM result for inhomogeneous flows. Formally, (B.43) can be written as... [Pg.402]


See other pages where Micromixing models inhomogeneous flows is mentioned: [Pg.211]    [Pg.246]    [Pg.219]    [Pg.241]    [Pg.251]    [Pg.263]    [Pg.263]    [Pg.200]    [Pg.222]    [Pg.232]   
See also in sourсe #XX -- [ Pg.200 ]

See also in sourсe #XX -- [ Pg.200 ]




SEARCH



Inhomogeneity

Inhomogeneity model

Inhomogeneous flows

Inhomogenities

Micromixing

Micromixing models

© 2024 chempedia.info