Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Inhibitors mode of action

BERGETAL. Sterol Biosynthesis Inhibitors Modes of Action... [Pg.185]

Process Catalyst Catalyst poison, inhibitor Mode of action... [Pg.198]

He/minthosporium (15). The mode of action is considered to be inhibition of the enzyme NADPH-cytochrome C reductase, which results in the generation of free radicals and/or peroxide derivatives of flavin which oxidize adjacent unsaturated fatty acids to dismpt membrane integrity (16) (see Enzyme inhibitors). [Pg.105]

Biorational approaches have proven useful in the development of classes of herbicides which inhibit essential metaboHc pathways common to all plants and thus are specific to plants and have low toxicity to mammalian species. Biorational herbicide development remains a high risk endeavor since promising high activities observed in the laboratory may be nullified by factors such as limitations in plant uptake and translocation, and the instabiHty or inactivity of biochemical en2yme inhibitors under the harsher environmental conditions in the field. Despite these recogni2ed drawbacks, biorational design of herbicides has shown sufficient potential to make the study of herbicide modes of action an important and growing research area. [Pg.39]

A second class of herbicides primarily affects ( -carotene desaturase. These herbicides are apparent feedback inhibitors of PD as well. This class of compounds includes dihydropyrones like LS 80707 [90936-96-2] (56) and 6-methylpyridines (57,58). The third class consists of the ben2oylcyclohexane-diones, eg, 2-(4-chloro-2-nitroben2oyl)-5,5-dimethyl-cyclohexane-I,3-dione. This class of atypical bleaching herbicides induces phytoene accumulation when appHed either pre- or post-emergence. However, it does not inhibit phytoene desaturase activity in vitro (59). Amitrole also has been considered a bleaching herbicide, though its main mode of action is inhibition of amino acid synthesis. [Pg.43]

Cell Division Inhibitors. The most common mode of action of soil-appHed herbicides is growth inhibition, primarily through dkect or indkect interference with cell division (163). Such growth inhibitory activity is the basis for most pre- or post-emergent herbicides intended to control germinating weed seeds. In germinating seeds, cell division occurs in the meristems of the root and the shoot. Meristematic cells go through a cycle... [Pg.45]

The inhibitors of amino acid synthesis, sulfonylureas, imidazolinones, and glyphosate, were first recognized as general growth inhibitors that prevent mitotic entry (188,189). Whatever the mode of action, herbicides that inhibit amino acid synthesis also cause a rapid inhibition of cell growth, usually through inhibition of mitotic entry. [Pg.46]

Mode of Action. All of the insecticidal carbamates are cholinergic, and poisoned insects and mammals exhibit violent convulsions and other neuromuscular disturbances. The insecticides are strong carbamylating inhibitors of acetylcholinesterase and may also have a direct action on the acetylcholine receptors because of their pronounced stmctural resemblance to acetylcholine. The overall mechanism for carbamate interaction with acetylcholinesterase is analogous to the normal three-step hydrolysis of acetylcholine however, is much slower than with the acetylated enzyme. [Pg.293]

The antiviral activity of (5)-DHPA in vivo was assessed in mice inoculated intranasaHy with vesicular stomatitis vims ( 5)-DHPA significantly increased survival from the infection. (5)-DHPA did not significantly reduce DNA, RNA, or protein synthesis and is not a substrate for adenosine deaminase of either bacterial or mammalian origin. However, (5)-DHPA strongly inhibits deamination of adenosine and ara-A by adenosine deaminase. Its mode of action may be inhibition of Vadenosyl-L-homocysteine hydrolase (61). Inhibition of SAH hydrolase results in the accumulation of SAH, which is a product inhibitor of Vadenosylmethionine-dependent methylation reactions. Such methylations are required for the maturation of vital mRNA, and hence inhibitors of SAH hydrolase may be expected to block vims repHcation by interference with viral mRNA methylation. [Pg.308]

It may be possible to increase the utility of our resources to treat influenza virus infection through combinations of antiviral agents with different modes of action (discussed in Cinatl et al. 2007a De Clercq and Neyts 2007). The sialidase inhibitors, for example, may be able to be used in conjunction with the adamantane-based M2 ion channel inhibitors (Govorkova et al. 2004 Ilyushina et al. 2006), with Ribavirin (Smee et al. 2002) or with non-influenza virus specific therapeutics such as anti-inflammatory drugs (Carter 2007). Combination therapy may also reduce the potential of resistance development (Ilyushina et al. 2006). [Pg.145]

Abstract The entry of viruses into target cells involves a complex series of sequential steps, with opportunities for inhibition at every stage. Entry inhibitors exert their biological properties by inhibiting protein-protein interactions either within the viral envelope (Env) glycoproteins or between viral Env and host-cell receptors. The nature of resistance to entry inhibitors also differs from compounds inhibiting enzymatic targets due to their different modes of action and the relative variability in... [Pg.177]

It is important to recognize that different types of inhibitors often function by different mechanisms, and that a given antioxidant may react in more than one way. Thus, a material that acts as an antioxidant under one set of conditions may become a pro-oxidant in another simation. The search for possible synergistic combinations of antioxidants can be conducted more logically and efficiently if we seek to combine the effects of different modes of action. Five general modes of oxidation inhibition are commonly recognized ... [Pg.467]


See other pages where Inhibitors mode of action is mentioned: [Pg.150]    [Pg.189]    [Pg.158]    [Pg.150]    [Pg.189]    [Pg.158]    [Pg.476]    [Pg.479]    [Pg.104]    [Pg.106]    [Pg.113]    [Pg.113]    [Pg.426]    [Pg.427]    [Pg.427]    [Pg.43]    [Pg.43]    [Pg.43]    [Pg.45]    [Pg.447]    [Pg.744]    [Pg.189]    [Pg.186]    [Pg.113]    [Pg.125]    [Pg.676]    [Pg.1043]    [Pg.1284]    [Pg.15]    [Pg.147]    [Pg.160]    [Pg.167]    [Pg.201]    [Pg.311]    [Pg.331]   
See also in sourсe #XX -- [ Pg.139 ]




SEARCH



Action inhibitors

Modes Of Action

© 2024 chempedia.info