Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Infrared continued

TABLE 7.27 Absorption Frequencies in the Near Infrared Continued)... [Pg.754]

Ostrowska and Narebska noted an infrared continuous absorption in hydrated acid form Nafion 120 membranes that began at 3400 cm and extended toward low wavenumbers. This feature was not present in dry membranes and, based on the work of Zundel et al., was proposed to be due to the existence of Hs02 and Hg04 groups, in which there are easily polarizable hydrogen bonds. This paper by Ostrowska and Narebska is also useful, as it contains a number of band assignments for Nafion. [Pg.331]

On the other hand, symmetric or nearly symmetric DM potentials may experimentally be detected more easily. For broad DM potentials with barriers which are not too large, protons are extremely mobile and give rise to the so-called infrared continue. The extremely large proton polarizabilities are due to the influence of the continuously changing electrical fields of the environment on the structures forming DM or broad SM potential energy profiles of hydrogen bonds (Ref.39). [Pg.165]

Continuous wave (CW) lasers such as Ar and He-Ne are employed in conmionplace Raman spectrometers. However laser sources for Raman spectroscopy now extend from the edge of the vacuum UV to the near infrared. Lasers serve as an energetic source which at the same hme can be highly monochromatic, thus effectively supplying the single excitation frequency, v. The beams have a small diameter which may be... [Pg.1199]

Figure C3.3.4 shows a schematic diagram of an apparatus tliat can be used to study collisions of tlie type described above [5, 9,12,16]. Donor molecules in a 3 m long collision cell (a cylindrical tube) are excited along tlie axis of tlie cell by a short-pulse excimer laser (typically 25 ns pulse widtli operating at 248 mil), and batli molecules are probed along tliis same axis by an infrared diode laser (wavelengtli in tlie mid-infrared witli continuous light-output... Figure C3.3.4 shows a schematic diagram of an apparatus tliat can be used to study collisions of tlie type described above [5, 9,12,16]. Donor molecules in a 3 m long collision cell (a cylindrical tube) are excited along tlie axis of tlie cell by a short-pulse excimer laser (typically 25 ns pulse widtli operating at 248 mil), and batli molecules are probed along tliis same axis by an infrared diode laser (wavelengtli in tlie mid-infrared witli continuous light-output...
TABLE 7.29 Infrared Transmission Characteristics of Selected Solvents Continued)... [Pg.759]

The so-called peak power delivered by a pulsed laser is often far greater than that for a continuous one. Whereas many substances absorb radiation in the ultraviolet and infrared regions of the electromagnetic spectrum, relatively few substances are colored. Therefore, a laser that emits only visible light will not be as generally useful as one that emits in the ultraviolet or infrared ends of the spectrum. Further, witli a visible-band laser, colored substances absorb more or less energy depending on the color. Thus two identical polymer samples, one dyed red and one blue, would desorb and ionize with very different efficiencies. [Pg.10]

In the far-infrared region strong absorption by the water vapour normally present in air necessitates either continuously flushing the whole optical line with dry nitrogen or, preferably, evacuation. [Pg.61]

For the visible and near-ultraviolet portions of the spectmm, tunable dye lasers have commonly been used as the light source, although they are being replaced in many appHcation by tunable soHd-state lasers, eg, titanium-doped sapphire. Optical parametric oscillators are also developing as useful spectroscopic sources. In the infrared, tunable laser semiconductor diodes have been employed. The tunable diode lasers which contain lead salts have been employed for remote monitoring of poUutant species. Needs for infrared spectroscopy provide an impetus for continued development of tunable infrared lasers (see Infrared technology and RAMAN spectroscopy). [Pg.17]

Spectroscopy. Infrared spectroscopy (48) permits stmctural definition, eg, it resolves the 2,2 - from the 2,4 -methylene units in novolak resins. However, the broad bands and severely overlapping peaks present problems. For uncured resins, nmr rather than ir spectroscopy has become the technique of choice for microstmctural information. However, Fourier transform infrared (ftir) gives useful information on curing phenoHcs (49). Nevertheless, ir spectroscopy continues to be used as one of the detectors in the analysis of phenoHcs by gpc. [Pg.299]

Sohd-state multi-element detector arrays in the focal planes of simple grating monochromators can simultaneously monitor several absorption features. These devices were first used for uv—vis spectroscopy. Infrared coverage is limited (see Table 3), but research continues to extend the response to longer wavelengths. Less expensive nir array detectors have been appHed to on-line process instmmentation (125) (see Photodetectors). [Pg.315]

EPA Method 6C is the instrumental analyzer procedure used to determine sulfur dioxide emissions from stationaiy sources (see Fig. 25-30). An integrated continuous gas sample is extracted from the test location, and a portion of the sample is conveyed to an instrumental analyzer for determination of SO9 gas concentration using an ultraviolet ( UV), nondispersive infrared (NDIR), or fluorescence analyzer. The sample gas is conditioned prior to introduction to the gas analyzer by removing particulate matter and moisture. Sampling is conducted at a constant rate for the entire test rim. [Pg.2200]

When the operating conditions are uniform and steady (there are no fluctuations in flow rate or in concentration of CO in the gas stream), the continuous sampling method can be used. A sampling probe is placed in the stack at any location, preferably near the center. The sample is extracted at a constant sampling rate. As the gas stream passes through the sampling apparatus, any moisture or carbon dioxide in the sample gas stream is removed. The CO concentration is then measured by a nondispersive infrared analyzer, which gives direct readouts of CO concentrations. [Pg.2201]

VACUUM RADIATING DESORPTION AND INFRARED SPECTROMETRY (VRDIR) FOR CONTINUOUS MONITORING OF SUSPENDED PARTICULATE ORGANIC MATTERS IN ATMOSPHERE... [Pg.173]

Normal mode analysis exists as one of the two main simulation techniques used to probe the large-scale internal dynamics of biological molecules. It has a direct connection to the experimental techniques of infrared and Raman spectroscopy, and the process of comparing these experimental results with the results of normal mode analysis continues. However, these experimental techniques are not yet able to access directly the lowest frequency modes of motion that are thought to relate to the functional motions in proteins or other large biological molecules. It is these modes, with frequencies of the order of 1 cm , that mainly concern this chapter. [Pg.153]

The time necessary for completion of the reaction may vary from 0.5 to 4 hours, depending on the actual activity of the alumina. The progress of conversion should be monitored by infrared analysis of a concentrated sample of the solution. Stirring should be continued for 15 minutes after the nitroso band at 1540 cm. has disappeared. A strong diazo band at about 2100 cm. will then be present. The carbonyl band at 1750 cm. initially due to nitrosocarbamate, will usually not disappear completely during the reaction, because some diethyl carbonate is formed in addition to carbon dioxide and ethanol. Diethyl carbonate is removed during the work-up procedure. [Pg.99]


See other pages where Infrared continued is mentioned: [Pg.149]    [Pg.170]    [Pg.149]    [Pg.170]    [Pg.1140]    [Pg.3002]    [Pg.521]    [Pg.10]    [Pg.57]    [Pg.293]    [Pg.291]    [Pg.139]    [Pg.191]    [Pg.192]    [Pg.201]    [Pg.1]    [Pg.9]    [Pg.19]    [Pg.442]    [Pg.297]    [Pg.532]    [Pg.316]    [Pg.147]    [Pg.224]    [Pg.208]    [Pg.576]    [Pg.387]    [Pg.369]    [Pg.369]    [Pg.1689]    [Pg.1770]    [Pg.39]   


SEARCH



Fourier-transform infrared (continued

Infrared (continued oxidized

Infrared (continued reflection

Infrared (continued sample preparation

Infrared (continued species

Infrared (continued spectrometer

Infrared (continued spectroscopy

Infrared (continued spectrum

Infrared (continued studies with

Infrared (continued transmission

© 2024 chempedia.info