Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Induced monomer polymerization

The first-order decomposition rates of alkyl peroxycarbamates are strongly influenced by stmcture, eg, electron-donating substituents on nitrogen increase the rate of decomposition, and some substituents increase sensitivity to induced decomposition (20). Alkyl peroxycarbamates have been used to initiate vinyl monomer polymerizations and to cure mbbers (244). They Hberate iodine quantitatively from hydriodic acid solutions. Decomposition products include carbon dioxide, hydrazo and azo compounds, amines, imines, and O-alkyUiydroxylarnines. Many peroxycarbamates are stable at ca 20°C but decompose rapidly and sometimes violently above 80°C (20,44). [Pg.131]

As described above, the enzymatic polymerization of phenols was often carried out in a mixture of a water-miscible organic solvent and a buffer. By adding 2,6-di-0-methyl-(3-cyclodextrin (DM-(3-CD), the enzymatic polymerization of water-insoluble m-substituted phenols proceeded in buffer. The water-soluble complex of the monomer and DM-(3-CD was formed and was polymerized by HRP to give a soluble polymer. In the case of phenol, the polymerization took place in the presence of 2,6-di-O-methyl-a-cyclodextrin (DM-a-CD) in a buffer. Only a catalytic amount of DM-a-CD was necessary to induce the polymerization efficiently. Coniferyl alcohol was oxidatively polymerized in the presence of a-CD in an aqueous solution. ... [Pg.232]

One of the first reactions to be studied systematically in a channel-type clathrate was the polymerization of olefins or diolefins. The ordering of the monomers within the clathrate lattice leads to stereoregular products that are not available by other techniques (232-234). Such radiation-induced stereospecific polymerization has been reported for a number of clathrate hosts (235). [Pg.196]

Nearly all synthetic polymers are synthesized by the polymerization or copolymerization of different "monomers." The chain growth process may involve the addition chain reactions of unsaturated small molecules, condensation reactions, or ringopening chain-coupling processes. In conventional polymer chemistry, the synthesis of a new polymer requires the use of a new monomer. This approach is often unsatisfactory for Inorganic systems, where relatively few monomers or cyclic oligomers can be Induced to polymerize, at least under conditions that have been studied to date. The main exception to this rule is the condensation-type growth that occurs with inorganic dl-hydroxy acids. [Pg.50]

The polymerization proceeds under photo- [49,50],X-ray [51], and y-ray [52] irradiation in the dark in vacuo, in air, or even in water or organic solvent as the dispersant (nonsolvent) for the crystals, similar to the solid-state polymerization of diacetylene compounds [ 12]. The process of topochemical polymerization of 1,3-diene monomers is also independent of the environment surrounding the crystals. Recently, the thermally induced topochemical polymerization of several monomers with a high decomposition and melting point was confirmed [53]. The polymer yield increases as the reaction temperature increases during the thermal polymerization. IR and NMR spectroscopies certified that the polymers obtained from the thermally induced polymerization in the dark have a stereoregular repeating structure identical to those of the photopolymers produced by UV or y-ray irradiation. [Pg.272]

Depending on the nature of the active center, chain-growth reactions are subdivided into radicalic, ionic (anionic, cationic), or transition-metal mediated (coordinative, insertion) polymerizations. Accordingly, they can be induced by different initiators or catalysts. Whether a monomer polymerizes via any of these chain-growth reactions - radical, ionic, coordinative - depends on its con-... [Pg.40]

A number of Mo carbene catalysts, bearing various modified ligands, have been reported and proven to elegantly induce living polymerization of acetylene monomers. The first example is the cyclopolymerization of 1,6-heptadiynes catalyzed by Mo carbenes Mo carbenes ligated by bulky imido and alkoxy groups are quite effective. In... [Pg.576]

An obvious question then arose is this a phenomenon common to all vinyl monomers In other words is this exclusion of water sufficient to promote radiation-induced ionic polymerizations even in media of very low dielectric constant and at room temperature We believe that the answer to both forms of the question is yes, although it may be difficult to achieve the proper conditions in some systems. [Pg.182]

Most of the work reported was done on styrene and methyl methacrylate, but there is little information on other systems. It seemed therefore desirable to study the gamma-induced emulsion polymerization of some other monomers. [Pg.195]

The goal of our work was to study the gamma-radiation-induced emulsion polymerization of some less common vinyl monomers, and to obtain more reliable data by refining the experimental technique. [Pg.195]

The high values of reported in Table I indicate that, despite the high rate of initiation provided by the laser irradiation, the propagation chain reaction still develops effectively in these multifunctional systems each photon induces the polymerization of up to 1700 monomer units in air-saturated systems and up to... [Pg.217]

The most important feature of ionizing radiations is, as the term implies, ionization to give ionic intermediates in irradiated systems. Though radiation-induced radical polymerization had long been studied, it is only a decade since radiation-induced ionic polymerization was first found. In 1957, Davison et al. obtained polymer from isobutene, which is known not to be polymerized by radical catalysts, by irradiating at low temperature with y-rays (7). Before long, the radiation-induced polymerization of styrene was proved to proceed as an ionic mechanism in suitable solvents (2,3,4). Since these pioneering researches, the study of the chemical kinetics of radiation-induced ionic polymerization has been extended to several vinyl, diene and cyclic monomers. [Pg.401]

So far as vinyl monomers are concerned, ionic propagation proceeds with carbonium ions (cationic polymerization) or carbanions (anionic polymerization) at the chain ends. The study of the initiation process of radiation-induced ionic polymerization seeks to elucidate how these ions are formed from the primary ionic intermediates. Possible reactions... [Pg.402]

The present review paper is concerned mainly with the ESR studies of irradiated organic glass matrices containing vinyl monomers made by the present authors to study the initiation process of radiation-induced ionic polymerization. In the following chapter, the study of the pure... [Pg.403]

Since 1965, Ueno and the present author (K. H.) have extensively studied the radiation-induced polymerization of rigorously dried styrene in bulk (39, 40, 41). They found that the rate of polymerisation was increased remarkably by drying the monomer. This was attributed to the radiation-induced cationic polymerization which was enhanced by the removal of water, a cation scavenger, from the polymerization system. Potter et al. reported the same findings independently (42). [Pg.414]

The cation radical is believed to be the primary cationic intermediate involving the monomer molecule in the initiation process of radiation-induced cationic polymerization. Now, the question is how the car-bonium ions are formed from the cation radicals. [Pg.417]

According to the studies of monomers in the organic glass matrices mentioned so far, the ion radicals formed from solute monomers relate their radiation-induced ionic polymerization to the primary effect of ionizing radiations on matter. It is concievable that the initiating species in the anionic polymerization (caxbanions) are formed by the addition of the monomer molecules to the anion radicals which result from electron transfer from the matrices to the solute monomer. The formation of the cation radicals is necessary also to initiate the cationic polymerization. [Pg.417]

The formation of ion radicals from monomers by charge transfer from the matrices is clearly evidenced by the observed spectra nitroethylene anion radicals in 2-methyltetrahydrofuran, n-butylvinylether cation radicals in 3-methylpentane and styrene anion radicals and cation radicals in 2-methyltetrahydrofuran and n-butylchloride, respectively. Such a nature of monomers agrees well with their behavior in radiation-induced ionic polymerization, anionic or cationic. These observations suggest that the ion radicals of monomers play an important role in the initiation process of radiation-induced ionic polymerization, being precursors of the propagating carbanion or carbonium ion. On the basis of the above electron spin resonance studies, the initiation process is discussed briefly. [Pg.418]


See other pages where Induced monomer polymerization is mentioned: [Pg.78]    [Pg.78]    [Pg.516]    [Pg.72]    [Pg.82]    [Pg.102]    [Pg.142]    [Pg.244]    [Pg.865]    [Pg.873]    [Pg.232]    [Pg.128]    [Pg.283]    [Pg.255]    [Pg.73]    [Pg.122]    [Pg.126]    [Pg.133]    [Pg.165]    [Pg.705]    [Pg.572]    [Pg.576]    [Pg.577]    [Pg.599]    [Pg.682]    [Pg.719]    [Pg.72]    [Pg.3]    [Pg.2]    [Pg.181]    [Pg.194]    [Pg.194]    [Pg.99]   
See also in sourсe #XX -- [ Pg.78 ]




SEARCH



Monomers, polymerization

Polymerization induced

© 2024 chempedia.info