Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Indoles salts

Nucleophilic attack at a carbon atom, followed by a mesomeric shift to make a nitrogen atom quaternary, has been known for many years. The best example is the formation of 1,3,3-trisubstituted 3 -indole salts by the action of alkyl halides on 1,3-disubstituted indoles. [Pg.53]

The use of indole salts is frequently required to achieve selective attack at the 3-position in the acylation reaction. However, this approach is not applicable to indoles bearing functional groups labile under basic conditions, and consequently, Grignard reagents or alkylzinc compounds cannot be used for the preparation of the indole salts as shown in Scheme 2.2. A second approach involves the use of N-protected indoles and requires protection-deprotection steps. [Pg.10]

Displaying remarkable molecular inventiveness, Butin and colleagues parlayed their basic reaction into a number of novel indole ring constructions (Scheme 2). The novel azulenio[7,8-h]indole salts 7 can also be obtained from the NH anilines corresponding to acetanilides 6 [3, 4], Bis-furans 6 were synthesized from u-nitrobenzaldehydes and two equivalents of furans [4], In a variation of the prototypical synthesis, Butin found that the installation of... [Pg.313]

Indole (I) condenses with formaldehyde and dimethylamine in the presence of acetie acid (Mannich reaction see Section VI,20) largely in the 3-position to give 3 dimethylaminomethylindole or gramine (II). The latter reaets in hot aqueous ethanol with sodium cyanide to give the nitrile (III) upon boiling the reaction mixture, the nitrile undergoes hydrolysis to yield 3-indoleaeet-amide (IV), part of which is further hydrolysed to 3-indoleacetic acid (V, as sodium salt). The product is a readily separable mixture of 20 per cent, of (IV) and 80 per cent, of (V). [Pg.1012]

If, instead of an ester, the Japp-Klingemann reaction is done with a salt of a P-ketoadd, decarboxylation occurs and the eventual product is a 2-acyl-indole. [Pg.65]

Gassman and co-workers developed a synthetic route from anilines to indoles and oxindoles which involves [2.3]-sigmatropic rearrangement of anilinosul-fonium ylides. These can be prepared from Ai-chloroanilines and ot-thiomcthyl-ketones or from an aniline and a chlorosulfonium salt[l]. The latter sequence is preferable for anilines with ER substituents. Rearrangement and cyclizalion occurs on treatment of the anilinosulfonium salts with EtjN. The initial cyclization product is a 3-(methylthio)indole and these can be desulfurized with Raney nickel. Use of 2-(methylthio)acetaldehyde generates 2,3-unsubstituled indoles after desulfurization[2]. Treatment of 3-methylthioindoles with tri-fiuoroacetic acid/thiosalieylie acid is a possible alternative to Raney nickel for desulfurization[3]. [Pg.71]

Lithiation at C2 can also be the starting point for 2-arylatioii or vinylation. The lithiated indoles can be converted to stannanes or zinc reagents which can undergo Pd-catalysed coupling with aryl, vinyl, benzyl and allyl halides or sulfonates. The mechanism of the coupling reaction involves formation of a disubstituted palladium intermediate by a combination of ligand exchange and oxidative addition. Phosphine catalysts and salts are often important reaction components. [Pg.98]

Table 11.1 lists some of the reaction conditions which have given prepara-tively useful yields of 3-alkylation. Entries 1-3 are typical alkylations using a magnesium salt and an alkyl halide. Even 2,3-disubstituted indoles are alkylated at C3 under these conditions (Entry 7). Entry 5 represents a more recently developed method in which an allylic alcohol and indole react in the... [Pg.105]

Because Pd(II) salts, like Hgtll) salts, can effect electrophilic metallation of the indole ring at C3, it is also possible to carry out vinylation on indoles without 3-substituents. These reactions usually require the use of an equiv. of the Pd(ll) salt and also a Cu(If) or Ag(I) salt to effect reoxidation of the Pd. As in the standard Heck conditions, an EW substitution on the indole nitrogen is usually necessary. Entry 8 of Table 11.3 is an interesting example. The oxidative vinylation was achieved in 87% yield by using one equiv. of PdfOAcfj and one equiv. of chloranil as a co-oxidant. This example is also noteworthy in that the 4-broino substituent was unreactive under these conditions. Part B of Table 11.3 lists some other representative procedures. [Pg.111]

Sulfenylation of indoles can be carried out with sulfenyl halides[7], disulfides[7-9] or with A -methylthiomorpholine[10]. With disulfides the indoles are converted to lithium[8] or zinc[9] salts prior to sulfenylation. Thiophenols and iodine convert indoles to 3-(arylthio)indoles[l 1]. [Pg.117]

An important method for construction of functionalized 3-alkyl substituents involves introduction of a nucleophilic carbon synthon by displacement of an a-substituent. This corresponds to formation of a benzylic bond but the ability of the indole ring to act as an electron donor strongly influences the reaction pattern. Under many conditions displacement takes place by an elimination-addition sequence[l]. Substituents that are normally poor leaving groups, e.g. alkoxy or dialkylamino, exhibit a convenient level of reactivity. Conversely, the 3-(halomethyl)indoles are too reactive to be synthetically useful unless stabilized by a ring EW substituent. 3-(Dimethylaminomethyl)indoles (gramine derivatives) prepared by Mannich reactions or the derived quaternary salts are often the preferred starting material for the nucleophilic substitution reactions. [Pg.119]

A -(indol-2-yl)pyridinium salt which can subsequently be hydrolysed to an oxindole[5]. [Pg.153]

The methine chain is obtained by reacting ethyl o-formate (method A ) or ethylisoformanilide (method B) with a bis quaternary salt of bis-(2-thiazolyllbutane. Concerning dyes with fused thiazolo rings pyrrolo[2. lb]thiazoIe. thiazolo[2.3a]indole. thiazolo[2.3c]1.4-benzox-azine. the a carbon directly linked to the carbon 2 of the thiazoJe ring is also responsible for the classical syntheses giving trimethine or penta-methine dyes. [Pg.58]

Crystal stmcture data are available for an indole—trinitroben2ene complex (2) and for the lithium and sodium salts in the presence of polyamine Ligands (3). The crystal stmcture of indole itself is evidendy disordered (4). Table 1 gives the and C-nmr assignments in CDCl (5). C-nmr assignments have been tabulated for many other indole derivatives (6). [Pg.84]

Another useful reagent for the 3-aLkylation of indole is the /V,/V-dimethy1foTma1 diminium ion, which forms the useful intermediate gramine [87-52-5] (9). The C-3 substituent can subsequendy be modified by displacement of the dimethylarnino group by a nucleophile. Alternatively, gramine can be converted to its quaternary salt prior to substitution. A variety of carbanions can function as the nucleophile. [Pg.85]

Acylation. Acylation is the most rehable means of introducing a 3-substituent on the indole ring. Because 3-acyl substituents can be easily reduced to 3-aLkyl groups, a two-step acylation—reduction sequence is often an attractive alternative to direct 3-aLkylation. Several kinds of conditions have been employed for acylation. Very reactive acyl haUdes, such as oxalyl chloride, can effect substitution directiy without any catalyst. Normal acid chlorides are usually allowed to react with the magnesium (15) or 2inc (16) salts. The Vilsmeier-Haack conditions involving an amide and phosphoms oxychloride, in which a chloroiminium ion is the active electrophile, frequentiy give excellent yields of 3-acylindoles. [Pg.85]

A AlI lation. 1-Substitution is favored when the indole ring is deprotonated and the reaction medium promotes the nucleophilicity of the resulting indole anion. Conditions which typically result in A/-alkylation are generation of the sodium salt by sodium amide in Hquid ammonia, use of sodium hydride or a similar strong base in /V, /V- dim ethyl form am i de or dimethyl sulfoxide, or the use of phase-transfer conditions. [Pg.85]

Another important reduction process is that of aryldiazonium salts with sulfite/bisulfite at controlled pH to produce aryUiydrazines. AryUiydrazines are important intermediates for the preparation of pyrazolones and indoles. [Pg.289]

Unsaturated hydrazones, unsaturated diazonium salts or hydrazones of 2,3,5-triketones can be used as suitable precursors for the formation of pyridazines in this type of cyclization reaction. As shown in Scheme 61, pyridazines are obtainable in a single step by thermal cyclization of the tricyanohydrazone (139), prepared from cyanoacetone phenylhydrazone and tetracyanoethylene (76CB1787). Similarly, in an attempted Fischer indole synthesis the hydrazone of the cyano compound (140) was transformed into a pyridazine (Scheme 61)... [Pg.41]

No systematic study of the mass spectra of pyridopyrazines has been noted, but those of 2,3-dialkyl and 2,3-diaryl derivatives have been recorded 750MS97), and mass spectrometry has been used in the elucidation of problems in the reactions of pyrido[2,3-f ]pyrazines with amide ion (including use of and derivatives) (79JHC305), and of pyrido[2,3-f ]pyrazinium salts with indoles (78ZOR431). The mass spectra of some 1-deazaflavins have been recorded (74JCS(P1)1965). [Pg.250]

Indole can be nitrated with benzoyl nitrate at low temperatures to give 3-nitroindole. More vigorous conditions can be used for the nitration of 2-methylindole because of its resistance to acid-catalyzed polymerization. In nitric acid alone it is converted into the 3-nitro derivative, but in a mixture of concentrated nitric and sulfuric acids 2-methyl-5-nitroindole (47) is formed. In sulfuric acid, 2-methylindole is completely protonated. Thus it is probable that it is the conjugate acid which is undergoing nitration. 3,3-Dialkyl-3H-indolium salts similarly nitrate at the 5-position. The para directing ability of the immonium group in a benzenoid context is illustrated by the para nitration of the conjugate acid of benzylideneaniline (48). [Pg.49]

Diazo coupling occurs very readily between pyrroles and indoles and benzenediazonium salts. Reaction is much more rapid in alkaline solution when the species undergoing reaction... [Pg.55]

Aminomethylindoles are particularly important synthetic intermediates. 3-Dimethyl-aminomethylindole (gramine) (153) and especially its quaternary salts readily undergo displacement reactions with nucleophiles (Scheme 60). Indole-2,3-quinodimethanes, generated from 2-methylgramine as shown in Scheme 61, undergo intermolecular cycloaddition reactions with dienophiles to yield carbazole derivatives (82T2745). [Pg.71]

A mild and effective method for obtaining N- acyl- and N- alkyl-pyrroles and -indoles is to carry out these reactions under phase-transfer conditions (80JOC3172). For example, A-benzenesulfonylpyrrole is best prepared from pyrrole under phase-transfer conditions rather than by intermediate generation of the potassium salt (81TL4901). In this case the softer nature of the tetraalkylammonium cation facilitates reaction on nitrogen. The thallium salts of indoles prepared by reaction with thallium(I) ethoxide, a benzene-soluble liquid. [Pg.82]


See other pages where Indoles salts is mentioned: [Pg.105]    [Pg.114]    [Pg.110]    [Pg.330]    [Pg.65]    [Pg.154]    [Pg.388]    [Pg.388]    [Pg.55]    [Pg.110]    [Pg.406]    [Pg.105]    [Pg.114]    [Pg.110]    [Pg.330]    [Pg.65]    [Pg.154]    [Pg.388]    [Pg.388]    [Pg.55]    [Pg.110]    [Pg.406]    [Pg.28]    [Pg.72]    [Pg.91]    [Pg.95]    [Pg.106]    [Pg.113]    [Pg.139]    [Pg.153]    [Pg.84]    [Pg.79]    [Pg.107]   
See also in sourсe #XX -- [ Pg.10 ]




SEARCH



Diazonium salts Fischer indole synthesis

Diazonium salts, reaction with indoles

Indole, sodium salt, preparation

Indoles quaternary salts

© 2024 chempedia.info