Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Indole-3-ethanol

The microbalance was found to give a linear response to template at concentrations between 10 and 200 nM. The selectivity of the imprinted and nonimprinted polymers was tested with the analogous compounds indolebutyric acid and indole ethanol. The results obtained are given in Table 1. [Pg.259]

Indole (I) condenses with formaldehyde and dimethylamine in the presence of acetie acid (Mannich reaction see Section VI,20) largely in the 3-position to give 3 dimethylaminomethylindole or gramine (II). The latter reaets in hot aqueous ethanol with sodium cyanide to give the nitrile (III) upon boiling the reaction mixture, the nitrile undergoes hydrolysis to yield 3-indoleaeet-amide (IV), part of which is further hydrolysed to 3-indoleacetic acid (V, as sodium salt). The product is a readily separable mixture of 20 per cent, of (IV) and 80 per cent, of (V). [Pg.1012]

The issue of regioselectivity arises with arylhydrazones of unsymmetrical ketones which can form two different enehydrazine intermediates. Under the conditions used most commonly for Fischer cyclizations, e g. ethanolic HCI, the major product is usually the one arising from the more highly substituted enehydrazine. Thus methyl ketones usually give 2-methy indoles and cycliz-ation occurs in a branched chain in preference to a straight chain. This regioselectivity is attributed to the greater stability of the more substituted enhydrazine and its dominance of the reaction path. [Pg.56]

Alkylation can also be accomplished with electrophilic alkenes. There is a dichotomy between basic and acidic conditions. Under basic conditions, where the indole anion is the reactive nucleophile, A-alkylation occurs. Under acidic conditions C-alkylation is observed. The reaction of indole with 4-vinylpyri-dine is an interesting illustration. Good yields of the 3-alkylation product are obtained in refluxing acetic acid[18] whereas if the reaction is done in ethanol containing sodium ethoxide 1-alkylation occurs[19]. Table 11.2 gives some examples of 3-alkylation using electrophilic alkenes. [Pg.107]

The Diabrotica spp. com rootworm beetles are specifically attracted to a variety of plant-produced phenylpropanoids, eg, ( )-cinnamaldehyde [14371-10-9] for the southern com rootworm D. undecimpunctata howardr, ( )-cinnamyl alcohol [4407-36-7] for the northern com rootworm D. barberi and indole [120-72-9] for the western com rootworm, D. virgifera virgifera. Especially powerflil lures for these rootworm beetles are 2-(4-methoxyphenyl)ethanol for the northern com rootworm and 4-methoxycinnamaldehyde [71277-11-7] (177) for the western com bootworm. [Pg.308]

In some instances, ring contraction is accompanied by cyclization to indole derivatives. For example, l-aryl-6-oxo-l,4,5,6-tetrahydropyridazines with a carboxyl or methyl group at position 3 give indoles when treated with an ethanolic solution saturated with hydrogen chloride or in the presence of BF3 etherate. [Pg.29]

Apply indole derivatives dissolved in sodium bo- [105] rate buffer solution (c = 0 2 mol/1, pH 9 0) — ethanol (1 -I-1) Dip TLC plate in fluorescamine solution to just above starting zone (15 s) Then dry at room temperature and develop In case of indole amines followed by spraying with 40% perchloric acid... [Pg.76]

Butin et al. reported that the indole derivative 29 was prepared by treatment of 2-tosylaminobenzylfuran 25 with ethanolic HCl in 78% yield. The furan ring served as the origin of a carbonyl group in this modification of the Reissert procedure. ... [Pg.156]

The application of double Fischer indolization has been demonstrated to provide larger amounts of the indolocarbazole 4 from the treatment of the hisphenylhydra-zone 151 with aqueous sulfuric acid (63JCS2504). A considerably more efficient protocol has been devised by Robinson, who obtained 4 in 35% yield on treatment of 1,4-cyclohexanedione bisphenylhydrazone (151) in a mixture of acetic acid and sulfuric acid (63JCS3097). In spite of many recent developments, this is still the method of choice for the preparation of the parent system 4 as the starting materials are cheap and readily available. Cyclization of 151 in ethanol-water containing... [Pg.31]

Highly electron-deficient 1,3,6-trinitrobenzene (145) treated with phenyl acet-amidines 146 in ethanol provided low yields of a dinitroindole derivatives, probably 4,6-dinitroindoles 148 (77JOC435). Formation of indole derivatives 148 can be explained by nucleophilic substitution of the activated aromatic hydrogen leading to intermediates 147, which then cyclized to the final products 148 (Scheme 22). [Pg.205]

A similar synthesis starting with l-(2-nitrobenzyl)pyrrol-2-aldehyde used ethanol-ethyl acetate as solvent (62). Indoles are prepared in excellent yield by hydrogenation of o-nitrobenzyl ketones over Pd-on-C (i). Azaindoles are correspondingly prepared from nitropyridines (97). [Pg.111]

A mixture of 5 parts of 3-(2 -ethyl-2 -nitrovinyl)indole in 80 parts of ethanol saturated with ammonia gas is shaken in an atmosphere of hydrogen at 100 atmospheres pressure and at 20°C... [Pg.614]

A solution of 60 g of chromic anhydride in 40 ml of water was added dropwise to a suspension of 60 g of 2-aminomethyl-1 -methyl-5-chloro-3-(o-fluorophenyl)-indole hydrochloride in 600 ml of acetic acid. The mixture was stirred at room temperature overnight. To the reaction mixture was added 1.1 liters of ether and 1 liter of water and then 800 ml of 28% ammonium hydroxide, in small portions. The ethereal layer separated, washed with water, dried, and concentrated under reduced pressure. The residue (51.8 g) was dissolved in 100 ml of ethanol, and 100 ml of 20% ethanollc hydrogen chloride was added to the solution and the mixture was cooled. The precipitate was collected by filtration to yield 46.5 g of 1 -methyl-7-chloro-5-(o-fluorophenyl)-1,3-dihydro-2H-1,4-benzodiazepine-2-one hydrochloride, melt-... [Pg.657]

For indole derivatives Dissolve 50 mg 4-(dimethylamino)-benz-aldehyde in 1 ml cone, sulfuric acid and make up to 100 ml with 95% ethanol [7]. [Pg.869]

Instead of Bronsted acids, lanthanide triflates can be used to catalyze the reaction of indole with benzaldehyde (Eq. 7.7). The use of an ethanol/water system was found to be the best in terms of both yield and product isolation. The use of organic solvent such as chloroform resulted in oxidized byproducts.17... [Pg.204]

As noted previously, a wide variety of aromatic systems serve as nuclei for arylacetic acid antiinflammatory agents. It is thus to be expected that fused heterocycles can also serve the same function. Synthesis of one such agent (64) begins with condensation of indole-3-ethanol (60) with ethyl 3-oxo-caproate (61) in the presence of tosic acid, leading directly to the pyranoindole 63. The reaction may be rationalized by assuming formation of hemiketal 62, as the first step. Cyclization of the carbonium ion... [Pg.458]

Other quinoline A-oxide derivatives have been examined. A 1,3-oxazepine is the major product of irradiation of 2-cyanoquinoline A-oxide whereas lactam formation predominates on irradiation of 4-methylquinoline N-oxide in aqueous ethanol.60 Lactam formation has been shown to be influenced by an external magnetic field and on this basis it has been proposed that the first step in this transformation is the formation of an excited radical-ion pair.61 1,3-Oxazepines undergo further reaction on prolonged irradiation. The synthesis of 4-substituted indoles, for example, has been accomplished in this way by irradiation of 5-substituted quinoline A-oxides.62... [Pg.251]

Convert indole to indolyl-3-methyl-ketone (I) by treating indolyl-Mg-Br (preparation already described) with acetyl-Cl, by treating indole in POCl3 with dimethylacetamide (Vilsmeier reaction), or by reacting indole with diketene (ACS 22,1064(1968)). 15.9 g (1) in 50 ml methanol cool, stir and add dropwise 16 g Br2. Reflux 1 Vi hours on water bath cool, filter, wash with ether and recrystallize-methanol to get 18 g indolyl-3-Br-methyl-ketone (II). Dissolve 11.9 g (II) in 60 ml warm isopropanol and add 11 g 3 8% aqueous DMA (or equimoiar amount other amine) reflux one hour on water bath. Filter (recrystallize-ethanol) to get 8.5 g indolyl-3-dimethylamino-methyl ketone (III). Add 4.6 g (0.02 M) (III) in 30 ml tetrahydrofuran to 2.3 g lithium aluminum hydride in 50 ml tetrahydrofuran, stir one-half hour at room temperature and reflux two hours. Add a little water dropwise and extract the precipitate with acetone. Dry, evaporate in vacuum the combined organic phases to get an oil which will precipitate with ether-petroleum ether to give DMT. (Ill) should be tested for psychedelic activity. Dialkyltryptamines BCSJ 11,221 (1936), BSC 2291 (1966)... [Pg.64]

Dissolve the OH-indole in ethanol (0.14 M in 50 ml) and add 28 ml dimethylsulfate and 1.2 g Na hydrosulfite. Add slowly with stirring and cooling (under N2 if possible) 12 g NaOH dissolved in 26 ml water (keep temperature at 20-25°). Heat to 70° for one-half hour, cool and dilute with an equal volume water. Extract the yellow oil into ether-benzene and dry, filter, and evaporate in vacuum to get the methoxy-indole. [Pg.72]


See other pages where Indole-3-ethanol is mentioned: [Pg.460]    [Pg.966]    [Pg.552]    [Pg.226]    [Pg.460]    [Pg.966]    [Pg.552]    [Pg.226]    [Pg.15]    [Pg.97]    [Pg.128]    [Pg.291]    [Pg.187]    [Pg.90]    [Pg.113]    [Pg.54]    [Pg.57]    [Pg.10]    [Pg.324]    [Pg.75]    [Pg.2448]    [Pg.146]    [Pg.203]    [Pg.73]    [Pg.42]    [Pg.257]    [Pg.294]    [Pg.134]    [Pg.63]    [Pg.66]    [Pg.71]   
See also in sourсe #XX -- [ Pg.551 ]




SEARCH



© 2024 chempedia.info