Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

In vivo Tests of Animal Exposure

The primary approach currently used to detect and characterize potential neurotoxicants involves the use of animal models, particularly rodents. Behavioral and neurophysiological tests, often similar to the ones used in humans, are typically administered. The sensitivity of these measures to neurotoxicant exposure is widely accepted. Although it is often not possible to test toxicant effects on some higher behavioral functions in animals (e.g., verbal ability, cognitive flexibility), there are other neurobehavioral outcomes such as memory loss, motivational defects, somatosensory deficits, and motor dysfunction that can be successfully modeled in rodents. These behaviors are based on the ability of the nervous system to integrate multiple inputs and outputs, thus they cannot be modeled adequately in vitro. Although the bulk of neurotoxicity data has been collected in rodents, birds and primates are also used to model human behavioral outcomes. [Pg.295]

More in-depth behavioral tests are required if dose-related toxicant effects are noted in screening tests. These tests may also be required as part of more selective toxicological screening, such as for developmental neurotoxicity. Focused tests of neuromotor function and activity, sensory functions, memory, attention, and motivation help to identify sites of toxicant-mediated lesioning, aid in the classification of neurotoxicants, and may suggest mechanisms of action. Some of these tests, like the schedule-controlled operant behavior tests for cognitive function, require animal training and extensive operator interaction with the animals. [Pg.296]


See other pages where In vivo Tests of Animal Exposure is mentioned: [Pg.295]   


SEARCH



Animal test

Animal testing

Exposure testing

In Vivo Animal Testing

In vivo exposure

In vivo testing

In vivo tests

© 2024 chempedia.info