Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

In the Diels-Alder

CH = CH — CH = CH — are said to have conjugated double bonds and react somewhat differently from the other diolefins. For instance, bromine or hydrogen is often added so that a product of the type -CHBr-CH=CH-CHBr- is formed. Also, these hydrocarbons participate in the Diels-Alder reaction see diene reactions). They show a tendency to form rubber-like polymers. Hydrocarbons not falling into these two classes are said to have isolated double... [Pg.142]

In the Diels-Alder reaction (in older literature referred to as the diene synthesis ) a six-membered ring is fonned through fusion of a four-tt component, usually a diene and a two-7C component, which is commonly referred to as the dienophile (Scheme 1.1). [Pg.2]

Another form of selectivity can arise when substitirted dienes and dienophiles are employed in the Diels-Alder reaction. Two different cycloadducts denoted as endo and exo can then be formed (Figure 1.2). [Pg.6]

Breslow immediately grasped the significance of his observation. He interpreted this discovery in terms of a hydrophobic effect Since in the Diels-Alder reaction. .. the transition state. .. brings together two nonpolar groups, one might expect that in water this reaction could be accelerated by hydrophobic interactions ". ... [Pg.19]

Interestingly, G jrey et al.", employing a similar tryptophan-derived catalyst (3.4), observed a 99% enantiomeric excess (ee) in the Diels-Alder reaction of 2-bromoacrolein with cyclopentadiene... [Pg.78]

The balance between aromatic and aUphatic reactivity is affected by the type of substituents on the ring. Furan functions as a diene in the Diels-Alder reaction. With maleic anhydride, furan readily forms 7-oxabicyclo [2.2.1]hept-5-ene-2,3-dicarboxyhc anhydride in excellent yield [5426-09-5] (4). [Pg.74]

Vinylboranes are interesting dienophiles in the Diels-Alder reaction. Alkenylboronic esters show moderate reactivity and give mixtures of exo and endo adducts with cyclopentadiene and 1,3-cyclohexadiene (441). Dichloroalkenylboranes are more reactive and dialkylalkenylboranes react even at room temperature (442—444). Dialkylalkenylboranes are omniphilic dienophiles insensitive to diene substitution (444). In situ formation of vinyl-boranes by transmetaHation of bromodialkylboranes with vinyl tri alkyl tin compounds makes possible a one-pot reaction, avoiding isolation of the intermediate vinylboranes (443). Other cycloadditions of alkenyl- and alkynylboranes are known (445). [Pg.321]

Dicyanoacetylene, 2-hiitynedinitri1e, is obtained from dimethyl acetylenedicarboxylate by ammonolysis to the diamide, which is dehydrated with phosphoms pentoxide (44). It bums in oxygen to give a flame with a temperature of 5260 K, the hottest flame temperature known (45). Alcohols and amines add readily to its acetylenic bond (46). It is a powerhil dienophile in the Diels-Alder reaction it adds to many dienes at room temperature, and at 180°C actually adds 1,4- to benzene to give the bicyclo adduct (7) [18341 -68-9] C QHgN2 (47). [Pg.405]

Oxidation of thiophene with peracid under carefully controlled conditions gives a mixture of thiophene sulfoxide and 2-hydroxythiophene sulfoxide. These compounds are trapped by addition to benzoquinone to give ultimately naphthoquinone (225) and its 5-hydroxy derivative (226) (76ACS(B)353). The further oxidation of the sulfoxide yields the sulfone, which may function as a diene or dienophile in the Diels-Alder reaction (Scheme 88). An azulene synthesis involves the addition of 6-(A,A-dimethylamino)fulvene (227) to a thiophene sulfone (77TL639, 77JA4199). [Pg.84]

Just as in the Diels-Alder reaction, 1,4-dipolar cycloadditions lead to six-membered rings. Their principal use in five-membered heterocycles is for ring annulations giving [5,6] ring-fused systems. [Pg.151]

Table 11.3 Relative Reactivity toward Cyclopentadiene in the Diels-Alder Reaction... Table 11.3 Relative Reactivity toward Cyclopentadiene in the Diels-Alder Reaction...
As it happens, the frontier orbital interactions in the Diels-Alder cycloaddition shown above are like those found in the middle drawing, i.e., the upper and lower interactions reinforce and the reaction proceeds. The cycloaddition of two ethene molecules (shown below), however, involves a frontier orbital interaction like the one on the right, so this reaction does not occur. [Pg.22]

Repeat your analysis for Z,Z-hexa-2,4-diene, and again calculate the energy to twist the diene into the same conformation as seen in the Diels-Alder transition state (Z,Z-hexa-2,4-diene+TCNE). Compare the two twisting energies , and rationalize the observed relative rates for the two cycloaddition reactions. [Pg.277]

From methoxybutenone and chlorotiimethylsilane, l-methoxy-3-trimethylsily-loxybuta-1,3-diene (the Danishevsky diene) (326), a synthon in the Diels-Alder reactions, is obtained (EtsN, 20 h, yield 76%) (79JPP7948765 86MI1). [Pg.234]

The borane catalyst 4 is also effective in the Diels-Alder reaction of furan (Scheme 1.11). In the presence of a catalytic amount of this reagent a-bromoacro-lein or a-chloroacrolein reacts with furan to give the cycloadduct in very good chemical yield with high optical purity [6d]. [Pg.10]

Although furan is usually a poor diene in the Diels-Alder reaction, the chiral copper reagent 24b promotes its asymmetric addition to acryloyloxazolidinone to afford the 7-oxabicyclo[2.2.1]hept-2-ene derivative in high optical purity (Scheme 1.40). Because a retro-Diels-Alder reaction occurs above -20 °C, the reaction must be performed at low temperature (-78 °C) to obtain a high optical yield. The bicy-... [Pg.29]

Table 1.21 Effect of metal salt on enantioselectivity in the Diels-Alder reaction of cyclopentadiene and acryloyloxazolidinone [22 ... Table 1.21 Effect of metal salt on enantioselectivity in the Diels-Alder reaction of cyclopentadiene and acryloyloxazolidinone [22 ...
The cationic aqua complexes prepared from traws-chelating tridentate ligand, R,R-DBFOX/Ph, and various transition metal(II) perchlorates induce absolute enantio-selectivity in the Diels-Alder reactions of cyclopentadiene with 3-alkenoyl-2-oxazoli-dinone dienophiles. Unlike other bisoxazoline type complex catalysts [38, 43-54], the J ,J -DBFOX/Ph complex of Ni(C104)2-6H20, which has an octahedral structure with three aqua ligands, is isolable and can be stored in air for months without loss of catalytic activity. Iron(II), cobalt(II), copper(II), and zinc(II) complexes are similarly active. [Pg.250]

These three complexes are equally active in the Diels-Alder reaction. [Pg.252]

Although the aqua nickel(II) complex A was confirmed to be the active catalyst in the Diels-Alder reaction, no information was available about the structure of complex catalyst in solution because of the paramagnetic character of the nickel(II) ion. Either isolation or characterization of the substrate complex, formed by the further complexation of 3-acryloyl-2-oxazolidinone on to the l ,J -DBFOX/ Ph-Ni(C104)2 complex catalyst, was unsuccessful. One possible solution to this problem could be the NMR study by use of the J ,J -DBFOX/Ph-zinc(II) complex (G and H, Scheme 7.9) [57]. [Pg.257]

Absolute configurations of the isoxazolidines obtained in the nitrone cydoaddition reactions described in Schemes 7.21 and 7.22 were determined to be 3S,41 ,5S structure by comparison of the optical rotations as well as retention times in a chiral HPLC analysis with those of the authentic samples. Selection of the si face at C/ position of 3-crotonoyl-2-oxazolidinone in nitrone cydoadditions was the same as that observed in the Diels-Alder reactions of cyclopentadiene with 3-croto-noyl-2-oxazolidinone in the presence of the J ,J -DBF0X/Ph-Ni(C104)2-3H20 complex (Scheme 7.7), and this indicates that the s-cis conformation of the dipolaro-phile has participated in the reaction. [Pg.276]

The endo exo selectivity for the Lewis acid-catalyzed carbo-Diels-Alder reaction of butadiene and acrolein deserves a special attention. The relative stability of endo over exo in the transition state accounts for the selectivity in the Diels-Alder cycloadduct. The Lewis acid induces a strong polarization of the dienophile FMOs and change their energies (see Fig. 8.2) giving rise to better interactions with the diene, and for this reason, the role of the possible secondary-orbital interaction must be considered. Another possibility is the [4 + 3] interaction suggested by Singleton... [Pg.308]

Phosphonium salts containing a benzyl group may be converted into ylides by the use of only moderately strong bases such as sodium ethoxide. The preparation of benzyli-dene derivatives of aldehydes and ketones is therefore easily done. The procedure below is for the preparation of a substituted butadiene, which in turn is ideally suited for use in the Diels-Alder reaction (see Chapter 8, Section I). [Pg.104]

Dehydration of fi-nitro iilcohols provides an important method for the preparation of nitroalkenes. Because lower nitroalkenes such as nitroethylene, Tnitro-Tpropene, and 3-nitro- Tpropene tend to polymerize, they must be prepared careftdly and used immediately after preparation. Dehydration v/ith phthalic anhydride is the most reliable method for such lower nitroiilkenes. Such lower nitroalkenes have been used as important reagents for Michael acceptors or dienophiles in the Diels-Alder reacdon, which v/ill be... [Pg.38]

Functionalized nitroalkenes are important chenophiles in the Diels-Alder ri example, fE -methyl fi-nitroactylate is an impottant reagent in organic synthesis The nitre group can be readily eliminated the Diels-Alder reaction of fi-nitroactylate is equivalent to that of ethyl propiolate with an inverse regiochemistry fEq. 8.4. ... [Pg.234]

Recently, enhanced endo selectivity has been reported in the Diels-Alder reaction of fE -l-acetoxybuta-l,3-dienes with methyl fi-nitroacrylate The selectivity is compared with that of the reaction using l-methoxybuta-l,3-dienes and 1-trimethylsilyloxybuta-1,3-di-enes The degree of electron richness of a diene is an important consideration in endo eKO selectivity issues In particular, electron-rich dienes favor the formation of fixc-nitrocycload-ducts fEq 8 9 ... [Pg.235]

A typlciil regioselecdvity and endo/exo selecdvity has been reported in the Diels-Alder reacdon of 2-W-acylamino -l,3-diene v/ith nitroalkenes fEq 8 21) Thus, exo products are predominandy formed, which is generiil for the Diels-Alder reacdon of nitroalkenes v/ith sterically hmdered dienes... [Pg.243]


See other pages where In the Diels-Alder is mentioned: [Pg.75]    [Pg.101]    [Pg.463]    [Pg.225]    [Pg.27]    [Pg.535]    [Pg.19]    [Pg.797]    [Pg.817]    [Pg.107]    [Pg.4]    [Pg.5]    [Pg.44]    [Pg.230]    [Pg.251]    [Pg.254]    [Pg.261]    [Pg.262]    [Pg.263]    [Pg.265]    [Pg.267]    [Pg.156]    [Pg.240]    [Pg.250]   


SEARCH



Diel-Alder Approach in the Diterpene QM Synthesis

Diels-Alder Reaction and Its Application in the Total Synthesis of Diterpenes

Diels-Alder reaction in the synthesis

Dienes in the Diels-Alder reaction,

Dienophile, in the Diels-Alder reaction,

Endo selectivity, in the Diels-Alder

Endo selectivity, in the Diels-Alder reaction

In the Diels-Alder reaction

Lewis acid catalysts in the Diels-Alder reaction

Orbital Interaction in the Diels-Alder Reaction

Rate enhancement in the Diels-Alder reaction

Reactivity in the Diels-Alder Reaction

Regioselectivity in the Diels-Alder reaction

Selectivity in the Diels Alder Reaction

Solvent effects in the Diels-Alder reaction

Stereoselectivity in the Diels-Alder reaction

The Diels-Alder reaction in more detail

© 2024 chempedia.info