Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Imonium

Although sulfur and nitrogen mustards have limited solubiUty in water at neutral pH, the small quantity that dissolves is extremely reactive. The reaction proceeds via a cycHc sulfonium or imonium intermediate... [Pg.398]

With nitrogen mustards, the imonium ion, which apparendy forms even in the absence of any solvent, readily attacks another molecule to form a dimer. For this reason, the nitrogen mustards are less stable than sulfur mustards in long-term storage. [Pg.398]

The imonium salt (199), obtained from ynamines and phosgeneimonium chloVide, underwent ready reaction with monosubstituted hydrazines to give the 3,5-bis(dimethyl-amino)pyrazole (200) (68T4217, 69T3453). Similarly, the adduct (201), resulting from the addition of phosgene to ynamines, likewise reacted with sym-disubstituted hydrazines to give pyrazoles (202). With hydroxylamine derivatives the isoxazolinone (203) was obtained. [Pg.132]

Spelling of amonium, imonium, and iminium indicates derivation from amine and imine onium salts. [Pg.314]

Enamines formed in this way may be distilled or used in situ. The ease of formation of the enamine depends on the structure of the secondary amine as well as the structure of the ketone. Thus pyrrolidine reacts faster than morpholine or piperidine, as expected from a rate-controlling transition state with imonium character. Six-membered ring ketones without a substituents form pyrrolidine enamines even at room temperature in methanol (20), and morpholine enamines are generated in cold acetic acid (21), but a-alkylcyclohexanones, cycloheptanone, and linear ketones react less readily. In such examples acid catalysis with p-toluenesulfonic acid or... [Pg.315]

The key step in syntheses of if/-quebrachamine (122-127) and if/-dihydro-cleavamine (12S) is the oxidation of tertiary amines with mercuric acetate to cyclic imonium salts, which give rise to an intramolecular electrophilic attack on an indole. [Pg.326]

The oxidation of unsymmetrical tertiary amines with mercuric acetate may also lead to isomeric enamines. In such cases, structures can often be established by NMR and IR spectra of the enamines and their corresponding imonium salts, through comparison with model systems (202-205). [Pg.342]

Extensions of the enamine alkylation to a-tetralones have also been used (245-248), but product yields were lower, presumably due to steric crowding in a transition state where generation of an imonium salt gives rise to a repulsion between a methylene group on nitrogen and a peri aromatic proton. [Pg.348]

Alkylation of enamines with epoxides or acetoxybromoalkanes provided intermediates for cyclic enol ethers (668) and branched chain sugars were obtained by enamine alkylation (669). Sodium enolates of vinylogous amides underwent carbon and nitrogen methylation (570), while vicinal endiamines formed bis-quaternary amonium salts (647). Reactions of enamines with a cyclopropenyl cation gave alkylated imonium products (57/), and 2-benzylidene-3-methylbenzothiazoline was shown to undergo enamine alkylation and acylation (572). A cyclic enamine was alkylated with methylbromoacetate and the product reduced with sodium borohydride to the key intermediate in a synthesis of the quebrachamine skeleton (57i). [Pg.357]

Thus the reactions of cyclic or acyclic enamines with acrylic esters or acrylonitrile can be directed to the exclusive formation of monoalkylated ketones (3,294-301). The corresponding enolate anion alkylations lead preferentially to di- or higher-alkylation products. However, by proper choice of reaction conditions, enamines can also be used for the preferential formation of higher alkylation products, if these are desired. Such reactions are valuable in the a substitution of aldehydes, which undergo self-condensation in base-catalyzed reactions (117,118). Monoalkylation products are favored in nonhydroxylic solvents such as benzene or dioxane, whereas dialkylation products can be obtained in hydroxylic solvents such as methanol. The difference in products can be ascribed to the differing fates of an initially formed zwitterionic intermediate. Collapse to a cyclobutane takes place in a nonprotonic solvent, whereas protonation on the newly introduced substitutent and deprotonation of the imonium salt, in alcohol, leads to a new enamine available for further substitution. [Pg.359]

The formation of an enamine from an a,a-disubstituted cyclopentanone and its reaction with methyl acrylate was used in a synthesis of clovene (JOS). In a synthetic route to aspidospermine, a cyclic enamine reacted with methyl acrylate to form an imonium salt, which regenerated a new cyclic enamine and allowed a subsequent internal enamine acylation reaction (309,310). The required cyclic enamine could not be obtained in this instance by base isomerization of the allylic amine precursor, but was obtained by mercuric acetate oxidation of its reduction product. Condensation of a dihydronaphthalene carboxylic ester with an enamine has also been reported (311). [Pg.362]

The alkylation of enamines with nitroolefins, which gives intermediates for reductive cyclization (6S2), also provided an example of a stable cycliza-tion product derived from attack of the intermediate imonium function by the nitro anion (683). A previously claimed tetrasubstituted enamine, which was obtained from addition of a vinylsulfone to morpholinocyclohexene (314), was shown to be the corresponding cyclobutane (684). Perfluoro-olefins also gave alkylation products with enamines (685). Reactions of enamines with diazodicarboxylate (683,686) have been used diagnostically for 6-substituted cyclohexenamines. In a reaction of 2-penten-4-one with a substituted vinylogous amide, stereochemical direction was seen to depend on solvent polarity (687). [Pg.375]

Fluorination of an enamine, enol ether, or enol acetate with CF3OF gave 60-70% yields of fluoroketone (708). Bromination of an endiamine gave the bis-imonium salt (647). [Pg.417]

Extension of the hydration reaction to hydrogen peroxide has shown that stable peroxides are formed from enamines and the imonium salts derived from secondary amines and ketones (506,507). [Pg.418]

While carboxylate anions do not add to the imonium function of ketone derived enamines, such as morpholinocyclohexene, when these are combined with carboxylic acids (38), the addition of thiophenol or benzyl mercaptan leads to a-aminothioethers (509,510). [Pg.419]

The formation of adducts of enamines with acidic carbon compounds has been achieved with acetylenes (518) and hydrogen cyanide (509,519,520) (used as the acetone cyanohydrin). In these reactions an initial imonium salt formation can be assumed. The addition of malonic ester to an enamine furnishes the condensation product, also obtained from the parent ketone (350,521). [Pg.420]

Similarly, a-trichloromethylamines (522) were obtained by decomposition of trichloroacetic acid in morpholine enamines, but an amide ester was formed from sodium trichloroacetate and the imonium salt of pyrrolidino-cyclohexene (523). The product is presumably derived from opening of an intermediate dichloroaziridinium salt. [Pg.421]

A more general aecess to the synthetie potential of aziridinium salts is found in the reactions of imonium salts with diazomethane 225,524,525, 536). [Pg.422]

Grignard reagents do not add directly to enamines, but their reactions with the corresponding imonium salts readily furnish tertiary amines (225,526). The reductive removal of halogen has been observed in the addition of Grignard reagents to a-bromoimonium salts (527). [Pg.423]

The addition of isocyanides and azide to aldehyde-derived enamines has led to tetrazoles (533,536). On the other hand the vinylogous amide of acetoacetic ester and related compounds reacted with aldehydes, isocyanides and acids to give a-acylaminoamides (534). Iminopyrrolidones and imino-thiopyrrolidones were obtained from the addition of cyclohexylisocyanide and isocyanates or isothiocyanates to enamines (535). An interesting method for the formation of organophosphorus compounds is found in the reactions of imonium salts with dialkylphosphites (536). [Pg.424]

The chemical reduction of enamines by hydride again depends upon the prior generation of an imonium salt (111,225). Thus an equivalent of acid, such as perchloric acid, must be added to the enamine in reductions with lithium aluminum hydride. Studies of the steric course (537) of lithium aluminum hydride reductions of imonium salts indicate less stereoselectivity in comparison with the analogous carbonyl compounds, where an equatorial alcohol usually predominates in the reduction products of six-membered ring ketones. [Pg.428]

An asymmetric synthesis has used the reduction of imonium salts to optically active tertiary amines with lithium aluminum alkoxy hydrides derived from optically active alcohols (538,539). [Pg.428]

Olefins are also the products of hydroboratlon of enamines, followed by treatment of the organoborane products with hot acid (543,544). The reduction of enamines with sodium borohydride and acetic acid (545) and the selective reduction of dienamines with sodium borohydride to give homo-allylic tertiary amines (138-140,225,546,547), has been applied to the synthesis of conessine (548) and other aminosteroid analogs (545,549-552). Further examples of the reduction of imonium salts by sodium borohydride can be found in the reduction of Bischler-Napieralski products, and other cyclic imonium salts (102). [Pg.429]

The stereochemical course of reduction of imonium salts by Grignard reagents was found to depend on the structure of the reagent 714). Hydro-boration of enamines and oxidation with hydrogen peroxide led to amino-alcohols (7/5). While aluminum hydrogen dichloride reacted with enamines to yield mostly saturated amines and some olefins on hydrolysis, aluminum hydride gave predominantly the unsaturated products 716). [Pg.433]

These reactions are related to the formation of pyrroles and quinolines from aminocarbonyl compounds and acetylenes (582,583) and may be contrasted with the formation of pyran derivatives by electrophilic attack on an enamine, followed by addition of an oxygen function to the imonium carbon (584-590). [Pg.437]

Use of the imonium group for protection of enones was explored. Stability to peracids, lead tetraacetate, bromine, and acetic anhydride was claimed (727). The usual resistance of enamines (but not their salts) to additions of Grignard reagents was used for selective addition to a 3,17-diketosteroid by formation of the usual 3-monoenamine 728). [Pg.447]

Though these alkaloids are not truly composed of two identical monomeric units, they are popularly named dimers or dimeric alkaloids. We prefer to avoid this incorrect nomenclature and would like to encourage the use of the more adequate binary terminology. In another consideration of nomenclature, we describe quaternary salts derived from an imine functionality as imonium salts, in accord with the descriptor for other onium salts (ammonium, oxonium, etc.), rather than by the frequently used iminium terminology. This nomenclature was suggested earlier (/). [Pg.77]

For a synthesis of leurosidine (56), 15,20-dihydrocatharanthine iV-oxide (57) was subjected to coupling with vindoline (3) under the modified Polo-novski conditions. The initial adduct, imonium salt 58, was converted to the enamine 59 in base. Oxidation of this product with osmium tetrox-ide proceeded chemo- and stereoselectively, without reaction of the... [Pg.94]


See other pages where Imonium is mentioned: [Pg.324]    [Pg.137]    [Pg.314]    [Pg.316]    [Pg.344]    [Pg.358]    [Pg.382]    [Pg.397]    [Pg.448]    [Pg.213]    [Pg.91]    [Pg.582]    [Pg.80]    [Pg.80]    [Pg.83]    [Pg.89]    [Pg.90]    [Pg.93]    [Pg.93]    [Pg.94]    [Pg.100]    [Pg.112]    [Pg.114]   
See also in sourсe #XX -- [ Pg.190 ]




SEARCH



Imonium salts

© 2024 chempedia.info