Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Iminium ions deprotonation

Different rate-determining steps are observed for the acid-catalyzed hydration of vinyl ethers (alkene protonation, ks kp) and hydration of enamines (addition of solvent to an iminium ion intermediate, ks increasing stabilization of a-CH substituted carbocations by 71-electron donation from an adjacent electronegative atom results in a larger decrease in ks for nucleophile addition of solvent than in kp for deprotonation of the carbocation by solvent. [Pg.112]

The catalytic Pd complex and the aryl bromide together suggest the first step is oxidative addition of Pd(0) to the C5-Br bond. (The reduction of Pd(II) to Pd(0) can occur by coordination to the amine, p-hydride elimination to give a Pd(II)-H complex and an iminium ion, and deprotonation of Pd(IE)-H to give Pd(0).) The C10-C11 k bond can then insert into the C5-Pd bond to give the C5-C10 bond. P-Hydride elimination then gives the Cl 1-C12 n bond and a Pd(II)-H, which is deprotonated by the base to regenerate Pd(0). The overall reaction is a Heck reaction. [Pg.215]

In Section 7.7.2 we met enamines as products from addition-elimination reactions of secondary amines with aldehydes or ketones. Enamines are formed instead of imines because no protons are available on nitrogen for the final deprotonation step, and the nearest proton that can be lost from the iminium ion is that at the P-position. [Pg.366]

Hine has demonstrated that simple amino acids, such as glycine and p-alanine, are not capable of intramolecular deprotonation in the reaction with isobutyraldehyde-2-d (Scheme 8) [62], Apparently, the carboxylate moiety in the iminium ion intermediate 29 is a relatively weak base and, as such, external bases, present in the buffer used (e.g. acetate ions), are largely responsible for the formation of the enamine intermediate 30. [Pg.38]

In a series of reports between 1991 and 1997 Yamaguchi showed that rubidium salts of L-proline (9) catalysed the conjugate addition of both nitroalkanes [29, 30] andmalonates [31-33] to prochiral a,p-unsaturated carbonyl compounds in up to 88% ee (Scheme 1). Rationalisation of the selectivities observed involved initial formation of an iminium ion between the secondary amine of the catalyst and the a,p-unsaturated carbonyl substrate. Subsequent deprotonation of the nucleophile by the carboxylate and selective delivery using ion pair... [Pg.285]

The majority of recent contributions for the conjugate addition of C-H acids to a,p-unsaturated carbonyl compounds catalysed through iminium ion intermediates have come from the laboratories of Jprgensen. The ease with which 1,3-dicarbonyl compounds and nitroalkanes can be deprotonated, together with the soft nature of the nucleophile mean this is a particularly facile reaction which conveniently leads to useful precursors for further synthetic manipulation. [Pg.299]

Falvey examined the reactions of A-methyl-A-phenylnitrenium ion 65 (Fig. 13.37) in the presence and absence of chloride. It was found the yield of aniline (resulting from hydrolysis of the product iminium ion) was unaffected by added base. This finding ruled out a deprotonation process and led to the conclusion that a 1,2-hydride shift had occurred. Cramer et al. modeled this process using ab initio methods. [Pg.620]

Iminium catalysis directly utilizes the higher reactivity of the iminium ion in comparison to the carbonyl species and facilitates Knoevenagel-type condensations, cyclo- and nucleophilic additions, and cleavage of cr-bonds adjacent to the a-carbon. Enamine catalysis on the other hand involves catalytically generated enamine intermediates that are formed via deprotonation of an iminium ion, and react with various electrophiles or undergo pericyclic reactions. ... [Pg.16]

Figure 7.2 illustrates the phosphorus pentoxide-mediated dehydration of a primary amide to a nitrile, using the transformation of nicotine amide (A) into nicotine nitrile (B) as an example. The reaction of phosphorus pentoxide at the carboxyl oxygen furnishes the partially ring-opened iminium ion E (simplified as F) via the polycyclic iminium ion C. E is deprotonated to give the mixed anhydride G from imidic acid and phosphoric acid. Imidic acids are characterized by the functional group R-C(=NH)-OH. This anhydride is transformed into the nitrile B by an El elimination via the intermediate nitrilium salt D. Nitrilium salts are iV-pro-tonated or V-alkylated nitriles. [Pg.322]

Iminium ions formed from an electrophile and an enamine are stable in the absence of a base. Upon aqueous workup they react via the unstable intermediate of an imine hydrate to furnish the corresponding a-functionalized aldehyde or ketone. Iminium ions formed in the presence of a base are deprotonated by this base to give an enamine. The latter is hardly ever isolated, but hydrolyzed upon a somewhat more aggressive workup with diluted... [Pg.488]

An iminium ion acting as the C electrophile and a carbonyl compound react—after passing the usual intermediates from Section 12.2 shown in Figure 12.14—to form a /3-ammocar-bonyl compound (Figure 12.14 and 12.15). First, this compound is obtained as the corresponding hydrochloride (Formula B in both figures). But it can also be deprotonated to form... [Pg.503]

Under acidic conditions enamines such as compound A in Figure 12.18 and aldehydes undergo condensation to form the conjugated iminium ions D. These will be deprotonated by the concomitantly formed hydroxide ions, In this way dienamines of type F are formed, which will then be hydrolyzed upon acidic workup to give a carbonyl group. The generation of the a,/i-unsaturated ketones E is thus completed. You will learn about type E compounds in Section 13.4.1 in connection with the so-called crossed aldol condensation products. It should be noted that it is not possible to form the same unsaturated ketone by reacting cyclopentanone or its equilibrium fraction of enol with an aliphatic aldehyde. Instead, a cyclodehydration of... [Pg.506]

In the reaction of Figure 12.19, the alkoxide formed in this step deprotonates a carboxylic acid (cis-1 —> K), whereas in Figure 12.18 an iminium ion is deprotonated (B — C). Accordingly, different chemoselectivities are observed Figure 12.19 shows an enamine-mediated aldol addition, and Figure 12.18 presents an enamine-mediated aldol condensation. Hydrolysis of the iminium ion K in Figure 12.19 leads to the formation of the aldol addition products B and the amine which, together with the still unconsumed substrate A, forms the new enam-ine C, to start the catalytic cycle anew. [Pg.509]

The deprotonation of an iminium ion (formula A in Figure 7.27) to give an enam-ine is reversible under the usual reaction conditions. Therefore, the most stable enam-ine possible is produced preferentially. Figure 7.28 emphasizes this using the example of an enamine formation from a-methylcyclohexanone (i.e., from an asymmetrical ketone). The enamine with the trisubstituted double bond is produced regioselectively and not the enamine with the tetrasubstituted double bond. Since the stability of olefins usually increases with an increasing degree of alkylation, this result is at first... [Pg.300]

Another rationalization for a lack of buildup of iminium ion is that both reactions which destroy it, namely hydration (equation 16) and deprotonation (reverse of equations... [Pg.1070]

Enamine catalysis involves a catalytically generated enamine intermediate that is formed via deprotonation of an iminium ion and that reacts with various electrophiles or undergoes pericyclic reactions. The first example of asymmetric enamine catalysis is the Hajos-Parrish-Eder-... [Pg.4]

This weakly basic amine (pK 4.05) is a superior catalyst for reactions involving deprotonation a to a carbonyl group. It is more effective than other weakly basic amines because of ease of iminium ion formation. Thus the decalone 1 is converted into 2 more rapidly by this amine via a than by other weakly basic nucleophilic amines. ... [Pg.531]

One-electron transfer from the substrate amino group to flavin (FI) results in the formation of the aminium radical and the flavin radical anion (FC) (Scheme 15). Deprotonation of the aminium radical to yield an a-aminoalkyl radical followed by a second electron transfer to the flavin radical anion will result in the formation of the reduced flavin and iminium ion. Alternatively the iminium ion can be formed by path d in Scheme 15 this involves formation of a covalent adduct which can... [Pg.1067]

The rate of initial electron transfer from A,7V-dimethylaniline to [Fe(phen)3] + is diffusion-limited. This is followed by the rate-determining proton transfer from the radical cation to pyridine to give the deprotonated a-amino radical which is rapidly oxidized by a second equivalent of [Fe(phen)3] + to yield the product iminium ion. Kinetic isotope effects [kii/kjf) for the proton transfer were determined from the J3/tfo ratios of the products derived from p-substituted A-methyl-A-trideuteromethylanilines. The k /kx) value first increases and then decreases with increasing pAa of p-substituted A,A-dimethylaniline. Such a bell-shaped isotope effect profile is typical of proton-transfer reactions [82, 85]. The maximum kn/fco value is determined as 8.8 which is much larger than the corresponding value for the demethylation of the same substrate by cytochrome P-450 (2.6) [79]. [Pg.1594]


See other pages where Iminium ions deprotonation is mentioned: [Pg.278]    [Pg.278]    [Pg.970]    [Pg.731]    [Pg.48]    [Pg.28]    [Pg.40]    [Pg.213]    [Pg.337]    [Pg.224]    [Pg.112]    [Pg.344]    [Pg.23]    [Pg.128]    [Pg.326]    [Pg.386]    [Pg.388]    [Pg.390]    [Pg.505]    [Pg.367]    [Pg.554]    [Pg.200]    [Pg.300]    [Pg.130]    [Pg.1075]    [Pg.8]    [Pg.37]    [Pg.152]    [Pg.1046]    [Pg.1068]    [Pg.1071]   
See also in sourсe #XX -- [ Pg.1070 ]

See also in sourсe #XX -- [ Pg.1070 ]




SEARCH



Iminium ion

© 2024 chempedia.info