Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Imines hydrocyanation reaction

The Strecker reaction [1] starting from an aldehyde, ammonia, and a cyanide source is an efficient method for the preparation of a-amino acids. A popular version for asymmetric purposes is based on the use of preformed imines 1 and a subsequent nucleophilic addition of HCN or TMSCN in the presence of a chiral catalyst [2], Besides asymmetric cyanations catalyzed by metal-complexes [3], several methods based on the use of organocatalysts have been developed [4-14]. The general organocatalytic asymmetric hydrocyanation reaction for the synthesis of a-amino nitriles 2 is shown in Scheme 5.1. [Pg.85]

The hydrocyanation reactions of electrophilic aldehydes, ketones and their corresponding imines gives direct access to synthetic derivatives of several important structures, including a-hydroxy carboxylic acids, / -amino alcohols and a-tertiary and a-quaternary-a-amino acids. The asymmetric hydrocyanation reaction provides access to chiral synthons, which have proven useful for the construction of many structurally complex and biologically active compounds. Catalysis of these reactions is especially attractive with respect to avoiding the cost and relative chemical inefficiency associated with the use of chiral auxiliaries. [Pg.207]

The catalyzed hydrocyanation of imines (Strecker reaction) has the option of employing a stable (salen)aluminum chloride or a Zr complex of 6,6 -dibromo-BINOL, with BujSnCN. It is important to derive the imines firom o-aminophenol for the present purpose. [Pg.85]

Additions of soft carbon nucleophiles to the carbonyl group of aldehydes, ketones and imines are reactions of obvious synthetic significance. For historical reasons, it is appropriate to start this short overview with the hydrocyanation reaction, as the addition of hydrogen cyanide to... [Pg.16]

The asymmetric reactions discussed in this chapter may be divided into three different types of reaction, as (1) hydrometallation of olefins followed by the C—C bond formation, (2) two C C bond formations on a formally divalent carbon atom, and (3) nucleophilic addition of cyanide or isocyanide anion to a carbonyl or its analogs (Scheme 4.1). For reaction type 1, here described are hydrocarbonyla-tion represented by hydroformylation and hydrocyanation. As for type 2, Pauson-Khand reaction and olefin/CO copolymerization are mentioned. Several nucleophilic additions to aldehydes and imines (or iminiums) are described as type 3. [Pg.101]

New catalyst design further highlights the utility of the scaffold and functional moieties of the Cinchona alkaloids. his-Cinchona alkaloid derivative 43 was developed by Corey [49] for enantioselective dihydroxylation of olefins with OsO. The catalyst was later employed in the Strecker hydrocyanation of iV-allyl aldimines. The mechanistic logic behind the catalyst for the Strecker reaction presents a chiral ammonium salt of the catalyst 43 (in the presence of a conjugate acid) that would stabilize the aldimine already activated via hydrogen-bonding to the protonated quinuclidine moiety. Nucleophilic attack by cyanide ion to the imine would give an a-amino nitrile product (Scheme 10). [Pg.155]

Recently, Kunz et al. reported a new organocatalyst for the asymmetric Strecker reaction [132]. The paracyclophane-derived imine catalyst (280) promotes the hydrocyanation of various imines, both aromatic and aliphatic (Scheme 79). [Pg.195]

Several organocatalysts have been recycled efficiently (selected examples are shown in Scheme 14.2). For example, the Jacobsen group has reported results from an impressive study of the recycling of the immobilized urea derivative 6, a highly efficient organocatalyst for asymmetric hydrocyanation of imines (Scheme 14.2) [11]. It was discovered that the catalyst can be recycled and re-used very efficiently - over ten reaction cycles the product was obtained with similar yield and enantioselectivity (96-98% yield, 92-93% ee). [Pg.395]

The asymmetric catalytic Strecker reaction is an elegant means of synthesis of optically active a-amino acids. The Jacobsen group developed optimized organocata-lysts [21, 44-48], optically active urea or thiourea derivatives, which were found to be the most efficient type of catalyst yet for asymmetric hydrocyanation of imines (see also Section 5.1 on the hydrocyanation of imines). Because of its high efficiency, Jacobsen hydrocyanation technology has already been used commercially at Rodia ChiRex [49]. The concept of the reaction is shown in Scheme 14.7. In the presence of a catalytic amount (2 mol%) of the readily available organocatalyst... [Pg.401]

Hydrocyanation of imines [5.1] Mannich reaction [5.2] Hydrophosphonylation of imines [5.5]... [Pg.425]

The Strecker reaction is defined as the addition of HCN to the condensation product of a carbonyl and amine component to give a-amino nitriles. Lipton and coworkers reported the first highly effective catalytic asymmetric Strecker reaction, using synthetic peptide 43, a modification of Inoue s catalyst (38), which was determined to be inactive for the Strecker reactions of aldimines (see Scheme 6.5) [62], Catalyst 43 provided chiral a-amino nitrile products for a number of N-benzhydryl imines (42) derived from substituted aromatic (71-97% yield 64->99% ee) and aliphatic (80-81% yield <10-17% ee) aldehydes, presumably through a similar mode of activation to that for hydrocyanations of aldehydes (Table 6.14). Electron-deficient aromatic imines were not suitable substrates for this catalyst, giving products in low optical purities (<10-32% ee). The a-amino nitrile product of benzaldehyde was converted to the corresponding a-amino acid in high yield (92%) and ee (>99%) via a one-step acid hydrolysis. [Pg.209]

At a loading as low as 1 mol%, 10b promoted the hydrocyanation of A-allyl or -benzyl imines derived from aromatic and aliphatic aldehydes and of some ketones in very high yield and almost complete stereoselectivity (see Scheme 2). It is interesting to note that the soluble and the resin-bound catalysts performed equally well. Recovery and recycling of the supported catalyst was shown to occur without any erosion of chemical or stereochemical efficiency over ten reaction cycles. [Pg.305]

The assymetric Strecker reaction of diverse imines, including aldimines as well as ketoimines, with HCN or TMSCN provides a direct access to various unnatural and natural amino acids in high enantiomeric excesses, using soluble or resin-linked non-metal Schiff bases the corresponding chiral catalysts are obtained and optimized by parallel combinatorial library synthesis [93]. A rather general asymmetric Strecker-type synthesis of various imines and a, 9-unsaturated derivatives is catalyzed by chiral bifunctional Lewis acid-Lewis base aluminum-containing complexes [94]. When chiral (salen)Al(III) complexes are employed for the hydrocyanation of aromatic substituted imines, excellent yields and enatio-selectivities are obtained [94]. [Pg.487]

Since the pioneering work by Ojima et al. [653] the Strecker-type reaction of imines bearing a chiral auxihary with TMSCN has frequently been used for asymmetric synthesis of a-aminonitriles [654]. In recent years catalytic asymmetric hydrocyanation of imines with TMSCN has been intensively studied to establish a more efficient route to optically active a-aminonitriles [655]. [Pg.556]


See other pages where Imines hydrocyanation reaction is mentioned: [Pg.184]    [Pg.192]    [Pg.85]    [Pg.87]    [Pg.89]    [Pg.91]    [Pg.93]    [Pg.93]    [Pg.95]    [Pg.432]    [Pg.245]    [Pg.245]    [Pg.233]    [Pg.233]    [Pg.332]    [Pg.190]    [Pg.193]    [Pg.195]    [Pg.124]    [Pg.126]    [Pg.2]    [Pg.86]    [Pg.86]    [Pg.92]    [Pg.397]    [Pg.214]    [Pg.149]    [Pg.230]    [Pg.1071]    [Pg.468]    [Pg.69]    [Pg.85]    [Pg.368]    [Pg.191]   
See also in sourсe #XX -- [ Pg.85 ]




SEARCH



Hydrocyanation

Hydrocyanation of Imines (Strecker Reaction)

Hydrocyanation reactions

Hydrocyanations

Imine reaction

Imines hydrocyanation

Imines, reactions

© 2024 chempedia.info