Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalysts resin-bound

Miller and coworkers demonstrated a successful application of a peptide-catalysed kinetic resolution in the total synthesis of (-)-mitosane, which is a key intermediate for mitomycin C synthesis. A pentapeptide was found to effect kinetic resolution via acylation of a racemic alcohol with a A ei of 27. ° To expand the scope of applications of peptide catalysts to substrates lacking additional hydrogen-bond donors and acceptors, the group of Miller initiated a screening of a peptide library containing potential catalysts (resin bound. [Pg.312]

In practice, 1—10 mol % of catalyst are used most of the time. Regeneration of the catalyst is often possible if deemed necessary. Some authors have advocated systems in which the catalyst is bound to a polymer matrix (triphase-catalysis). Here separation and generation of the catalyst is easy, but swelling, mixing, and diffusion problems are not always easy to solve. Furthermore, triphase-catalyst decomposition is a serious problem unless the active groups are crowns or poly(ethylene glycol)s. Commercial anion exchange resins are not useful as PT catalysts in many cases. [Pg.189]

Until now, the most efficient approach to synthesize Freidinger lactams 147 started from a resin-bound cinnamylamine 144. A Fukuyama-Mitsunobu reaction to 145 followed by sulfonamide cleavage and a consecutive appropriate acylation built up the diene 146, which underwent ring-closing metathesis involving Grubb s catalyst 123 to generate the desired lactams 147 (Scheme 27, Table 5) [35d]. [Pg.149]

These catalysts were first tested as resin-bound derivatives via HTS, first with metals and then without. Three libraries of chiral molecules, based on three different enantiomerically pure diamines, bulky salicylidene moities and optically active ii-amino acids were used for structure optimisation (Scheme 37 TBSCN = fBuMe2SiCN) [152]. [Pg.256]

The Jacobsen group has also shown that the recycling of the resin-bounded catalyst can be successfully performed [152,154]. Moreover, they have developed an efficient method for the hydrolysis of the aminonitrile into the corresponding amino acid. This method was apphed for the commercial production of optically active K-amino acids at Rhodia ChiRex (e.g. tert-leucine) the catalyst was immobihsed on a resin support (4 mol %, 10 cycles) and the intermediate hydrocyanation adduct was trapped by simply replacing TFAA with HCOOH/AC2O, for example. Highly crystalhne formamide derivatives were thus obtained in excellent yields (97-98% per cycle) with very high enantioselectivities (92-93% per cycle) [158]. [Pg.259]

Several palladium catalysts for formation of aryl sulfides from aryl halides have been investigated more recently. A combination of Pd2(dba)3 and DPEphos catalyzed the formation of a broad range of diaryl sulfides in the presence of 1 mol.% palladium and NaO-t-Bu base in toluene solvent.12,rThe highest yields of alkyl aryl sulfides were obtained from aryl triflates and n-butyl thiol catalyzed by a combination of palladium acetate and BINAP. However, these reactions contained 10 mol.% catalyst, were long, and required deactivated aryl triflates. A combination of Pd2(dba)3 and DPPF catalyzed the coupling of thiols with resin-bound aryl halides.121... [Pg.384]

Several combinatorial approaches to the discovery of transition metal based catalysts for olefin polymerization have been described. In one study Brookhart-type polymer-bound Ni- and Pd-(l,2-diimine) complexes were prepared and used in ethylene polymerization (Scheme 3).60,61 A resin-bound diketone was condensed with 48 commercially available aminoarenes having different steric properties. The library was then split into 48 nickel and 48 palladium complexes by reaction with [NiBr2(dme)] and [PdClMe(COD)], respectively, all 96 pre-catalysts being spatially addressable. [Pg.518]

One obvious synthetic route to isoxazoles and dihydroisoxazoles is by [3+2] cycloadditions of nitrile oxides with alkynes and alkenes, respectively. In the example elaborated by Giacomelli and coworkers shown in Scheme 6.206, nitroalkanes were converted in situ to nitrile oxides with 1.25 equivalents of the reagent 4-(4,6-di-methoxy[l,3,5]triazin-2-yl)-4-methylmorpholinium chloride (DMTMM) and 10 mol% of N,N-dimethylaminopyridine (DMAP) as catalyst [373], In the presence of an alkene or alkyne dipolarophile (5.0 equivalents), the generated nitrile oxide 1,3-dipoles undergo cycloaddition with the double or triple bond, respectively, thereby furnishing 4,5-dihydroisoxazoles or isoxazoles. For these reactions, open-vessel microwave conditions were chosen and full conversion with very high isolated yields of products was achieved within 3 min at 80 °C. The reactions could also be carried out utilizing a resin-bound alkyne [373]. For a related example, see [477]. [Pg.238]

An inverted system based on the C02-soluble catalyst Pd(OAc)2/PtBu3 has been utilized for Suzuki-coupling of resin-bound substrates [33], The use of scC02 with polymer-supported substrates seems highly attractive owing to the known plasticizing... [Pg.231]

The actual structure of the active catalyst in the above reactions is a matter of speculation. The evidence, however, points to the presence of a homogeneous but immobilized Fischer-Tropsch catalyst. Since soluble CpCo(CO)2 does not possess Fischer-Tropsch activity, this activity is a unique feature of the polymer-bound system. The finding that 5 is regenerated quantitatively upon exposure of the active Fischer-Tropsch catalyst resin to CO implies that the n5-cyclopentadienylcobalt bond remains intact throughout the Fischer-Tropsch reaction. Similar... [Pg.180]

FIGURE 4.16 4-Dimethylamipyridine has caused enantiomerization when used as catalyst for acylation of resin-bound functional groups. [Pg.115]

The possibility of solving the catalyst recovery problem by attaching active catalyst centers to insoluble pol)rmeric substrates was recognized early(26), as was the possible use of chiral PTC catalysts to introduce chirality in products(1). Much work in both these areas has been partially successful(27). However, the results have not been completely satisfactory in that resin bound catalysts have shown much lower catalytic activity than soluble catalysts and they frequently lose their activity with repeated use. Chiral... [Pg.3]

Buchwald has shown that, in combination with palladium(II) acetate or Pd2(dba)3 [tris(dibenzylideneacetone)dipalladium], the Merrifield resin-bound electron-rich dialkylphosphinobiphenyl ligand (45) (Scheme 4.29) forms the active polymer-supported catalysts for amination and Suzuki reactions [121]. Inactivated aryl iodides, bromides, or even chlorides can be employed as substrates in these reactions. The catalyst derived from ligand (45) and a palladium source can be recycled for both amination and Suzuki reactions without addition of palladium. [Pg.227]

Various polymer-bound (polystyrene-bound) oxazaboroHdine catalysts for the reduction of secondary alcohols were reported [128]. These can simply be prepared by condensation of the resin-bound boronic acid with chiral 1,2-amino alcohols. The best results as far as enatioselectivity is concerned were obtained with oxaza-borohdine (59) (Scheme 4.36). [Pg.232]

Resin-bound 4/7-1,3-oxazines 115 were synthetized by the stepwise condensation of an amide resin 489, an aldehyde, and an alkyne. Formation of the oxazine ring took place in the presence of the catalyst BF3-Et20 via a hetero-Diels-Alder cycloaddition of the alkyne and the acyliminium 491 arising from the condensation of the amide and the aldehyde (Scheme 92). The quantitative efficacy of the process was determined by elemental analysis of a model system bearing a bromine atom on the aldehyde moiety (R =C6H4Br(p)), which indicated a 78% conversion for the heterocyclization <2001CEJ2318, 2004JC0846>. [Pg.436]

A carbodiimide-grafted polystyrene resin was reacted with tetramethyl-guanidine to give an interesting biguanide structure (Scheme 13). This was assayed as a catalyst for a transesterification reaction.33 Incidentally, resin-bound guanidines are useful bases for processes involving resin capture.34... [Pg.11]

Ruhland et al. used PdCl2(dppf)-NEt3 Heck conditions to add to a resin-bound aryl iodide, thereby generating supported 4-styryl (3-lactams, as shown in Scheme 17.45 This catalyst system, also found to be effective for the Suzuki reaction (see Section 2.4), is unusual for the Heck reaction and had only previously been used for an intramolecular cyclization.46 The more usual conditions of Pd(OAc)2/phosphine/NEt3 or K2C03 were found to be ineffective. [Pg.39]

The results of these studies were then used to demonstrate the versatility of the reaction by coupling a variety of boronic species with the same resin-bound iodobenzoate (Scheme 30). Catalyst suitability was found to depend upon the specific reaction performed, and the yields were again moderate to excellent. Of particular note is the success of the Pd(II) catalyst [presumably generating Pd(0) in situ], in contrast to the studies outlined in... [Pg.51]

A variety of conditions were tried for the coupling, and aqueous KOH in DME were found to be optimal. Although Pd(PPh3)4 and PdCl2(PPh3)2 worked equally well as catalysts, the latter was easier to handle, and this becomes an important issue when many reactions must be run to make a library. The resin-bound vinyl boronates 29, which would be produced if the order of addition of halides were different, were not stable with respect to deboration, and subsequent yields using this strategy were low. [Pg.54]

Sphinx Pharmaceuticals101 patented successful Stille (with a resin-bound organostannane) and Suzuki (with a supported boronic acid) cross-couplings. In the same patent, they also reported a coupling of a phenylacety-lene with a resin-bound bromide wherein Pd(OAc)2 was the catalyst (Scheme 50). [Pg.67]

To a heavy-walled flask equipped with a nitrogen inlet side arm was added resin-bound terminal acetylene (684.4 mg resin, 0.274 mmol, 0.448 mequiv/g resin) and aryl iodide (120.6 mg, 0.3011 mmol) (Scheme 11). The flask was evacuated and back-filled with nitrogen a minimum of three times. The supernatant of a separate 0.2 M catalyst cocktail solution (previously prepared) was added via cannula (5 mL, 3.0 mmol) to the reaction flask. The flask was kept sealed at 65°C for 12 h and agitated periodically to remix polymer beads stuck on flask walls. The beads were then transferred to a fritted filter using methylene chloride and washed with methylene chloride (21 mL). Excess aryl iodide can be recovered from the first methylene chloride wash. All further washes were carried out in the ratio of 30 mL/g resin. The resin was washed sequentially with DMF, 0.05 M solution of sodium diethyl dithiocarbamate in 99 1 DMF-diisopropylethylamine,... [Pg.142]


See other pages where Catalysts resin-bound is mentioned: [Pg.232]    [Pg.335]    [Pg.143]    [Pg.293]    [Pg.305]    [Pg.77]    [Pg.361]    [Pg.183]    [Pg.376]    [Pg.177]    [Pg.98]    [Pg.122]    [Pg.208]    [Pg.4]    [Pg.470]    [Pg.481]    [Pg.376]    [Pg.391]    [Pg.121]    [Pg.360]    [Pg.192]    [Pg.187]    [Pg.375]    [Pg.377]    [Pg.343]    [Pg.121]    [Pg.375]    [Pg.377]    [Pg.57]   
See also in sourсe #XX -- [ Pg.360 ]




SEARCH



Resin-bound

© 2024 chempedia.info