Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Imine compounds cycloadditions

Cycloaddition reactions of 1,3-dipoles with two-atom dipolarophiles are known as Huisgen cycloadditions [99]. When the 1,3 dipole is formed in situ, for example, by condensation of an a-aminocarbonyl compound and an amine, a three-component reaction can be performed in a domino imine formation/cycloaddition fashion. Organocatalytic domino 1,3-dipolar [3-1-2] cycloadditions were first described by the Gong group. They showed that (aromatic) aldehydes 191 and a-amino-substituted malonates 190 selectively form the corresponding imine dipole that reacts further with electron-deficient olefin dipolarophiles 192 (Scheme 42.44) [100]. [Pg.1322]

There is some evidence for the formation of unstable benzazetidines from [2 + 2] cycloaddition of benzyne to imines (75BCJ1063). A novel formation of a benzazetidine is reported in the solvolysis of the exo iV-chloro compound (297). Neighbouring group participation by the benzene ring leads to the cation (298), which is intercepted by methanol to give the benzazetidine (299) (81CC1028). [Pg.277]

Silylketenes in formation of (3-lactones and (3-lactams 98JCS(P1)2105. Syntheses of (3-lactams, (3-lactones, and 1,3- and 1,4-diazetidinediones by pho-tochemically induced cycloaddition reactions of chromium carbene complexes with imines, aldehydes, and azo compounds 97T4105. [Pg.245]

Other advances include the construction of seven- and nine-membered rings via the analogous [4-1-3] and [6-1-3] cycloadditions with dienes and trienes respectively. Heterocycles, such as tetrahydrofurans and pyrrolidines, are accessible using carbonyl compounds and imines as substrates. The following discussion is organized around these recent discoveries. It serves to illustrate the versatility and the high degree of selectivity which are some of the distinctive features of the Pd-TMM chemistry. [Pg.61]

PI Recent reviews dealing with catalytic en-antioselective cycloaddition reactions of carbonyl compounds and imines see. e.g.. Refs. 2(g) and 2(h) K.A. [Pg.183]

Cyclopropyl ketones 32 and cyclopropyl imines 33 can also undergo [3+2] cycloaddition reactions with enones 34 in presence of NHC-Ni complexes to afford the corresponding cyclopentane compounds 35 (Scheme 5.9) [11]. The catalytic system is prepared in situ from the use of [Ni(COD),], SIPr HCl salt and KOBu, the reaction also required the use of Ti(O Bu) as an additive to improve yields and increase reactions rates. In most of the cases, th products 35 were obtained in good to excellent diastereoselectivities. [Pg.137]

The temperature at which a cycloaddition reaction of a neopentylsilene takes place (detected by the elimination of LiCl) has turned out to be dependent on the reaction partners added as substrate. This implies that an interaction between the substrate and A or B or the substrate and C occurs somewhere along the reaction pathway depicted above. For the system Cl3SiCH=CH2/LiBut/R2C=NR it was observed that the imine initiates and supports the salt elimination from the species A/B. Based on the knowledge that silenes are stabilized by external donors [1] we conclude that with carbon unsaturated compounds x-donor interactions instead of cr-donor complexes may be possible as well for the lithiated species (D) as for the silene itself (E). [Pg.104]

Dichloroneopentylsilene is formed in situ by reaction of trichlorovinylsilane with LirBu [1], The [2+2] cycloaddition to imines yields Si-dichloro functionalized 2-silaazetidines in a preparative scale [2], When aldimines are used as trapping agents for the silene, the resulting SiN-four membered ring compounds are isolated as syn/anti-isomers (syn/anti 2/1). [Pg.115]

Thermolysis of 6-substituted l,5-diazabicyclo[3.1.0]hexanes 326, easily available from 325, leads to a diaziridine ring opening and to the intermediate formation of labile azomethine imines 327. These compounds can be stabilized by a proton shift to form 1-substituted 2-pyrazolines 328. However, when the thermolysis is carried out in the presence of a 1,3-dipolarophile, the corresponding products of dipolar cycloaddition can be obtained. For example, iV-arylmaleimides provide mixtures of the major trans- and minor air-products 329 and 330, respectively (Scheme 47) C1999RJO110, 2001RJ0841, 2003RJ01338, 2004RJ067>. [Pg.414]

H(65)1889, 2005EJO3553>. Starting dihydro[l,2,4]triazolo[3, 4-4]benzo[l,2,4]triazines 482 readily react with aromatic aldehydes to yield iminium salts 483. These salts treated with a base (e.g., triethylamine) are deprotonated to reactive 1,3-dipolar azomethine imines 484. In contrast to related five-membered heterocycles, these compounds are relatively unstable on storage in the solid form and particularly in solution. Fortunately, this obstacle can be easily circumvented by their in situ preparation and subsequent 1,3-dipolar cycloaddition. These compounds can participate in 1,3-dipolar cycloadditions with both symmetric and nonsymmetric dipolarophiles to give the expected 1,3-cycloadducts in stereoselective manner. Selected examples are given in Scheme 82. [Pg.436]

A second category of silene reactions involves interactions with tt-bonded reagents which may include homonuclear species such as 1,3-dienes, alkynes, alkenes, and azo compounds as well as heteronuclear reagents such as carbonyl compounds, imines, and nitriles. Four modes of reaction have been observed nominal [2 + 2] cycloaddition (thermally forbidden on the basis of orbital symmetry considerations), [2 + 4] cycloadditions accompanied in some cases by the products of apparent ene reactions (both thermally allowed), and some cases of (allowed) 1,3-dipolar cycloadditions. [Pg.28]

The synthesis of nitrogen containing heterocyclic systems by photocylo-addition processes is virtually limited to examples involving [ 2 + 2] cycloaddition of imines, nitriles, and azo compounds. Successful additions are few in number and the requirements for success uncertain. The reactions do not proceed with the facility with which carbonyl containing compounds undergo photocycloaddition to alkenes to give oxetans, and various explanations have been advanced to account for this observed lack of reactivity.226... [Pg.285]

Apart from isolated reports summarized in Scheme 47, the chemistry of the fully conjugated ring systems has not been especially developed since CHEC-II(1996). In 1999, Monnier et al. reported the 1,3-dipolar cycloaddition of Reissert compound 160 with acrylates. Addition of triethylamine traps hydrofluoroboric acid and increases the proportion of milnchnone imine 160B the reaction therefore predominantly yields 1,3-adduct 161 which rearranges to 162 (Scheme 47) <1996BSB777, 1999EJ0297>. [Pg.445]

Closure of the oxadiazole ring is still achieved through cycloaddition between pyridine iV-oxides and isocyanates, affording adducts such as 142 (Scheme 38) <1995T6451>. Nonaromatic imine fV-oxides exhibited similar reactivities, since azasugar-derived fV-oxides as a mixture of 143 and 144 underwent cycloaddition reactions in the presence of phenyl isocyanate or trichloroacetonitrile. Compounds 145 and 146 (Scheme 39) were obtained from the aldoxime W-oxide 143 two other regioisomeric heterocycles arose from the ketoxime derivative 144 <1996T4467>. [Pg.607]

Scheme 29 describes a plausible mechanism for the formation of the products which fit the observed coulometric (n 0.45 F/mol) and preparative results. The intramolecular cyclization process involves a dimerization between a radical cation 52a and the ketene imine 52 to form the intermediate radical cation 52b which then cyclizes to the radical 52c which can abstract a hydrogen atom leading to 54 or can be further oxidized and transformed through a cyclization and deprotonation reaction to 53 which involves 1 F/mol. However, it seems that the [2 -1- 3]-cycloaddition between the parent compound 52 and the cation 52d giving rise to 55 is the fastest reaction as compared with the intramolecular cyclization of 52d to 53. This can also explain the low consumption of electricity. [Pg.116]

Compounds of the general formula 69 are prepared by cycloaddition of N-methyl- or A(-arylmaleimides with arylidene imines of AAs and in the presence of an aromatic aldehyde. Stabilized azomethine ylides are formed as intermediates, which then afford the cycloadducts. Several isomers are formed, and the influence of various metal salts and solvents was investigated (87BCJ4067 88T557). Similar transformations have been performed with A-ailyl glycine esters (91TL1359). [Pg.41]

To form the stereocenter at C-3 a direct reduction-alkynylation sequence was applied, that provided the diastereomeric homopropargylic alcohols 83 in a ratio of syn anti=76l2A, The major isomer syn-S3 was isolated in 55% yield. The key step of the synthesis was an intramolecular imidotitanium-al-kyne [2+2] cycloaddition/acyl cyanide condensation. With this sequence the pyrrolidine ring was formed and all the carbon atoms of the alkyl side chain were established in acrylonitrile 84. The reduction of the imine double bond proceeded stereoselectively and the nitrile group was removed reductively en route to the target compound. [Pg.23]

Chiral phosphoric acids mediate the enantioselective formation of C-C, C-H, C-0, C-N, and C-P bonds. A variety of 1,2-additions and cycloadditions to imines have been reported. Furthermore, the concept of the electrophilic activation of imines by means of phosphates has been extended to other compounds, though only a few examples are known. The scope of phosphoric acid catalysis is broad, but limited to reactive substrates. In contrast, chiral A-triflyl phosphoramides are more acidic and were designed to activate less reactive substrates. Asymmetric formations of C-C, C-H, C-0, as well as C-N bonds have been established. a,P-Unsaturated carbonyl compounds undergo 1,4-additions or cycloadditions in the presence of A-triflyl phosphoramides. Moreover, isolated examples of other substrates can be electrophil-ically activated for a nucleophilic attack. Chiral dicarboxylic acids have also found utility as specific acid catalysts of selected asymmetric transformations. [Pg.454]

The [3 + 2] cycloaddition of diazo compounds to imines or nitriles is an alternative approach to the preparation of 1,2,3-triazoles and 1,2,3-triazolines. For reviews, see CHEC-I <84CHEC-I(5)7I7>. [Pg.112]


See other pages where Imine compounds cycloadditions is mentioned: [Pg.196]    [Pg.619]    [Pg.92]    [Pg.441]    [Pg.62]    [Pg.211]    [Pg.21]    [Pg.423]    [Pg.426]    [Pg.433]    [Pg.434]    [Pg.415]    [Pg.103]    [Pg.428]    [Pg.46]    [Pg.56]    [Pg.167]    [Pg.468]    [Pg.689]    [Pg.934]    [Pg.95]    [Pg.283]    [Pg.395]    [Pg.50]    [Pg.61]   
See also in sourсe #XX -- [ Pg.516 ]

See also in sourсe #XX -- [ Pg.516 ]




SEARCH



Cycloaddition compounds

Imine 2+2] cycloaddition

Imine compounds

Imine compounds 2 + 3]-cycloaddition reactions

Imine compounds intramolecular cycloadditions

Imines compounds

Imines cycloadditions

© 2024 chempedia.info