Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Imidazole epoxidation

Table 6. Summary of DSC kinetic results on imidazole-epoxide reactions... Table 6. Summary of DSC kinetic results on imidazole-epoxide reactions...
The DSC kinetic data for imidazole-epoxide reactions are summarised in Table 6. [Pg.151]

Reactions of Imidazoles. Epoxides are produced in high yields from olefins and... [Pg.253]

One of the most significant developmental advances in the Jacobsen-Katsuki epoxidation reaction was the discovery that certain additives can have a profound and often beneficial effect on the reaction. Katsuki first discovered that iV-oxides were particularly beneficial additives. Since then it has become clear that the addition of iV-oxides such as 4-phenylpyridine-iV-oxide (4-PPNO) often increases catalyst turnovers, improves enantioselectivity, diastereoselectivity, and epoxides yields. Other additives that have been found to be especially beneficial under certain conditions are imidazole and cinchona alkaloid derived salts vide infra). [Pg.34]

The introduction of chlorinated porphyrins (10) allowed for hydrogen peroxide to be used as terminal oxidant [62], These catalysts, discovered by Mansuy and coworkers, were demonstrated to resist decomposition, and efficient epoxidations of olefins were achieved when they were used together with imidazole or imidazo-lium carboxylates as additives, (Table 6.6, Entries 1 and 2). [Pg.201]

The observation that addition of imidazoles and carboxylic acids significantly improved the epoxidation reaction resulted in the development of Mn-porphyrin complexes containing these groups covalently linked to the porphyrin platform as attached pendant arms (11) [63]. When these catalysts were employed in the epoxidation of simple olefins with hydrogen peroxide, enhanced oxidation rates were obtained in combination with perfect product selectivity (Table 6.6, Entry 3). In contrast with epoxidations catalyzed by other metals, the Mn-porphyrin system yields products with scrambled stereochemistry the epoxidation of cis-stilbene with Mn(TPP)Cl (TPP = tetraphenylporphyrin) and iodosylbenzene, for example, generated cis- and trans-stilbene oxide in a ratio of 35 65. The low stereospecificity was improved by use of heterocyclic additives such as pyridines or imidazoles. The epoxidation system, with hydrogen peroxide as terminal oxidant, was reported to be stereospecific for ris-olefins, whereas trans-olefins are poor substrates with these catalysts. [Pg.202]

Complex (17) of Class 3 has no chiral auxiliary, but is endowed with facial chirality by the presence of a bridging strap (Figure 4).65 Treatment of (17) with oxidant generates metal oxo bonds, preferentially on the sterically less hindered (nonbridged) side of the complex, and epoxidation with (17) is low in enantioselectivity (Scheme 10). However, the enantioselectivity is considerably improved by the addition of imidazole. The imidazole has been considered to coordinate the metal center from the nonbridged side and to force the formation of metal oxo bonds on the bridged (chiral) side, thus enhancing enantioselectivity. [Pg.215]

A rather complex microwave-assisted ring-opening of chiral difluorinated epoxy-cyclooctenones has been studied by Percy and coworkers (Scheme 6.131) [265]. The epoxide resisted conventional hydrolysis, but reacted smoothly in basic aqueous media (ammonia or N-methylimidazole) under microwave irradiation at 100 °C for 10 min to afford unique hemiacetals and hemiaminals in good yields. Other nitrogen nucleophiles, such as sodium azide or imidazole, failed to trigger the reaction. The reaction with sodium hydroxide led to much poorer conversion of the starting material. [Pg.194]

Konishi et al.97 synthesized porphyrin compound 127. As shown in Scheme 4-44, asymmetric epoxidation of prochiral olefins such as styrene derivatives and vinyl naphthalene by iodosobenzene has been achieved by using this porphyrin complex as the catalyst in the presence of imidazole. The optically active epoxides were obtained with moderate ee. [Pg.243]

Epoxidation.1 This combination is known to oxidatively cleave double bonds but to effect epoxidation when catalyzed by a metalloporphyrin. Epoxidation of alkenes can also be effected by catalysis with a simple amine. The choice of the amine depends on the olefin. N,N-Dimethylethylenediamine is the most efficient ligand for epoxidation of a 1-alkene (68% yield). Pyridine is the best ligand for epoxidation of stilbene (93%), and imidazole is preferred for epoxidation of QH5CH=CHCH, (71% yield). [Pg.62]

Without additives, radical formation is the main reaction in the manganese-catalyzed oxidation of alkenes and epoxide yields are poor. The heterolytic peroxide-bond-cleavage and therefore epoxide formation can be favored by using nitrogen heterocycles as cocatalysts (imidazoles, pyridines , tertiary amine Af-oxides ) acting as bases or as axial ligands on the metal catalyst. With the Mn-salen complex Mn-[AI,AI -ethylenebis(5,5 -dinitrosalicylideneaminato)], and in the presence of imidazole as cocatalyst and TBHP as oxidant, various alkenes could be epoxidized with yields between 6% and 90% (in some cases ionol was employed as additive), whereby the yields based on the amount of TBHP consumed were low (10-15%). Sterically hindered additives like 2,6-di-f-butylpyridine did not promote the epoxidation. [Pg.443]

In the case of manganese porphyrin catalyzed epoxidations, the axial ligands have been used alone or together with other additives like carboxylic acids (Banfi and coworkers) and soluble bases (Johnstone and coworkers). For example, Mansny and coworkers showed that in the presence of imidazole, 2-methylimidazole or 4-imidazole chloromanganese(tetra-2,6-dichlorophenylporphyrin) catalyzes the epoxidation of varions aUtenes including 1-alkenes by Under these conditions alkene conversion... [Pg.445]

Oxindole 89 was cleanly demethylated upon treatment with boron tribromide. The resulting oxindole 90 was subjected to the prenylation conditions, and the desired alkylated product 91 was obtained in 52% yield. The epoxidation/Lewis acid-mediated cyclization proved to be successful on this substrate. The epoxide product was directly treated with SnCl4 in THF to provided the desired 92. When oxindole 92 was treated with NaBHt (1.6 equivjand BF3 OEt2 (3.5 equiv) in THF, the desired 93 was obtained. The indole 93 was treated with TBDMSC1 and imidazole in DMF, to provide the required O-silylated indole, which was easily converted to the gramine 94 through the well known Mannich procedure. [Pg.361]

These compounds can initiate anionic polymerisation of epoxides, and when R, = H the secondary amine can react by addition to an epoxide group. Farkas and Strohm 64> have studied the reaction of 2-ethyl-4-methyl imidazole with phenyl glycidyl ether and BADGE resin using chemical analysis and proton NMR spectroscopy. They found that the imidazole readily forms adducts with epoxide of 1 1 and 1 2 molecular ratio ... [Pg.126]

The cure kinetics of some epoxy resin powder coating composition were reported by Olcese et al.108). These were mixtures of BADGE resins with DICY and an epoxide-amine adduct or an imidazole as accelerator, together with TiOz and plasticisers. Data from DSC scans were analysed using Eq. (2-12) to obtain the apparent activation energy, E. Also Eq. (2-13) and (2-13 a) were used to obtain estimates of E and order... [Pg.144]


See other pages where Imidazole epoxidation is mentioned: [Pg.262]    [Pg.262]    [Pg.341]    [Pg.125]    [Pg.769]    [Pg.207]    [Pg.87]    [Pg.373]    [Pg.248]    [Pg.200]    [Pg.201]    [Pg.384]    [Pg.766]    [Pg.125]    [Pg.41]    [Pg.125]    [Pg.129]    [Pg.166]    [Pg.107]    [Pg.428]    [Pg.445]    [Pg.1030]    [Pg.1154]    [Pg.112]    [Pg.428]    [Pg.443]    [Pg.445]    [Pg.1030]    [Pg.1154]    [Pg.296]    [Pg.459]   
See also in sourсe #XX -- [ Pg.228 ]




SEARCH



Epoxides reaction with imidazole

Epoxides with imidazole

© 2024 chempedia.info