Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hypothalamus releasing factors

The release of prolactin from the adenohypophysis is normally inhibited by prolactin-inhibiting hormone (PIH, dopamine) from the hypothalamus. Prolactin secretion is also controlled by prolactin-releasing factor (PRF). The release of PRF from the hypothalamus is mediated by reflexes elicited by suckling and breast stimulation. [Pg.127]

Hypothalamic-Pituitary-Adrenal (HPA) axis An integrated neuroendocrine system linking the hypothalamus (noradrenaline and corticotropin-releasing factor CRF) with the anterior pituitary (corticotropin or ACTH) and the adrenal cortex (cortisol). [Pg.243]

The hypothalamic releasing factors regulate release of the anterior pituitary trophic hormones. As summarized in Figure 52-1, the releasing factors are produced in various neuronal groups within the hypothalamus and are transported to the median eminence for release into the portal circulation to the anterior pituitary. Neurons in the hypothalamus also produce the hormones oxytocin and vasopressin, which are released by the posterior pituitary into the blood. Therefore, it is not surprising that behavior and experience, which influence the hypothalamus, sometimes alter the secretion of these hypothalamic releasing factors and hormones. [Pg.844]

Dopamine has an alerting effect. Neurochemicals involved in wakefulness include norepinephrine and acetylcholine in the cortex and histamine and neuropeptides (e.g., substance P and corticotropin-releasing factor) in the hypothalamus. [Pg.827]

Kirby LG, Chou-Green JM, Davis K, Lucki I (1997) The effects of different stressors on extracellular 5-hydroxytryptamine and 5-hydroxyindoleacetic acid. Brain Res 760 218-230 Kirby LG, Rice KC, Valentino RJ (2000) Effects of corticotropin-releasing factor on neuronal activity in the serotonergic dorsal raphe nucleus. Neuropsychopharmacology 22 148-162 Kozicz T, Yanaihara H, Arimura A (1998) Distribution of urocortin-like immunoreactivity in the central nervous system of the rat. J Comp Neurol 391 1-10 Lavicky J, Dunn AJ (1993) Corticotropin-releasing factor stimulates catecholamine release in hypothalamus and prefrontal cortex in freely moving rats as assessedby microdialysis. J Neurochem 60 602-612... [Pg.201]

Koegler-Muly SM, Owens MJ, Ervin GN, Kilts CD, Nemeroff CB (1993) Potential corticotropin-releasing factor pathways in the rat brain as determined by bilateral electrolytic lesions of the central amygdaloid nucleus and paraventricular nucleus of the hypothalamus. J Neuroendocrinol 5 95-98... [Pg.362]

It is a polypeptide of 39 amino acid residues of molecular weight approximately 4,500. It is secreted by basophil cells under the control of CRF (corticotropin releasing factor) from the hypothalamus. ACTH controls the growth of adrenal cortex and the synthesis of corticosteroids and is essential to life. The action of ACTH on adrenal cortex is mediated through cyclic AMP. [Pg.271]

Gonadotrophin secretion is under the control of hypothalamus and sex hormones. The hypothalamic nuclei secrete a specific releasing factor for the release of both FSH LH. [Pg.272]

The hypothalamus-pituitary system is of particular importance for steroid hormones. The formation of steroid hormones in the adrenal cortex is controlled by the pituitary hormone corticotrophin (ACTH), whose formation in turn is regulated by the corresponding releasing factor of the hypothalamus, corticotrophin releasing hormone (CRH). [Pg.150]

Many small peptides exert their effects at very low concentrations. For example, a number of vertebrate hormones (Chapter 23) are small peptides. These include oxytocin (nine amino acid residues), which is secreted by the posterior pituitary and stimulates uterine contractions bradykinin (nine residues), which inhibits inflammation of tissues and thyrotropin-releasing factor (three residues), which is formed in the hypothalamus and stimulates the release of another hormone, thyrotropin, from the anterior pituitary gland. Some extremely toxic mushroom poisons, such as amanitin, are also small peptides, as are many antibiotics. [Pg.86]

Corticotropin-releasing factor and arginine vasopressin, which are released predominantly by the paraventricular nucleus of the hypothalamus, are important regulators of corticotropin (ACTH) release, which in turn triggers the release of cortisol and other steroids by the adrenal gland. Both the administration of certain psychoactive agents and emotional arousal originating from the limbic system are able to modify the functions of the pituitary-adrenal axis and stimulate the synthesis of cortisol. [Pg.558]

Figure 18.2. Endocrine-immune inter-relationship in normal subject. The hypothalamic-pituitary-adrenal (HPA) axis is a feedback loop that includes the hypothalamus, the pituitary and the adrenal glands. The main hormones that activate the HPA axis are corticotrophin releasing factor (CRF), arginine vasopressin (AVP) and adrenocorticotrophic hormone (ACTH). The loop is completed by the negative feedback of cortisol on the hypothalamus and pituitary. The simultaneous release of cortisol into the circulation has a number of effects, including elevation of blood glucose for increased metabolic demand. Cortisol also negatively affects the immune system and prevents the release of immunotransmitters. Interference from other brain regions (e.g. hippocampus and amygdala) can also modify the HPA axis, as can neuropeptides and neurotransmitters. Figure 18.2. Endocrine-immune inter-relationship in normal subject. The hypothalamic-pituitary-adrenal (HPA) axis is a feedback loop that includes the hypothalamus, the pituitary and the adrenal glands. The main hormones that activate the HPA axis are corticotrophin releasing factor (CRF), arginine vasopressin (AVP) and adrenocorticotrophic hormone (ACTH). The loop is completed by the negative feedback of cortisol on the hypothalamus and pituitary. The simultaneous release of cortisol into the circulation has a number of effects, including elevation of blood glucose for increased metabolic demand. Cortisol also negatively affects the immune system and prevents the release of immunotransmitters. Interference from other brain regions (e.g. hippocampus and amygdala) can also modify the HPA axis, as can neuropeptides and neurotransmitters.
The effect of stress on the endocrine and immune systems depends upon its duration and severity. Following acute stress, the rise in ACTH in response to the release of corticotrophin releasing factor (CRF) from the hypothalamus results in a rise in the synthesis and release of cortisol from the adrenals. The increase in the plasma cortisol concentration results in a temporary suppression of many aspects of cellular immunity. Due to the operation of an inhibitory feedback mechanism, stimulation of the central glucocorticoid receptors in the hypothalamus and pituitary causes a decrease in the further release of CRF, thereby decreasing the further... [Pg.437]

Figure 18.3. Endocrine-immune inter-relationship in depression. In depression, the hypothalamic-pituitary-adrenal (HPA) axis is up-regulated with a down-regulation of its negative feedback controls. Corticotrophin releasing factor (CRF) is hypersecreted from the hypothalamus and induces the release of adrenocortico-trophic hormone (ACTH) from the pituitary. ACTH interacts with receptors on adrenocortical cells and cortisol is released from the adrenal glands adrenal hypertrophy can also occur. Release of cortisol into the circulation has a number of effects, including elevation of blood glucose. The negative feedback of cortisol to the hypothalamus, pituitary and immune system is impaired. This leads to continual activation of the HPA axis and excess cortisol release. Cortisol receptors become desensitized leading to increased activity of the pro-inflammatory immune mediators and disturbances in neurotransmitter transmission. Figure 18.3. Endocrine-immune inter-relationship in depression. In depression, the hypothalamic-pituitary-adrenal (HPA) axis is up-regulated with a down-regulation of its negative feedback controls. Corticotrophin releasing factor (CRF) is hypersecreted from the hypothalamus and induces the release of adrenocortico-trophic hormone (ACTH) from the pituitary. ACTH interacts with receptors on adrenocortical cells and cortisol is released from the adrenal glands adrenal hypertrophy can also occur. Release of cortisol into the circulation has a number of effects, including elevation of blood glucose. The negative feedback of cortisol to the hypothalamus, pituitary and immune system is impaired. This leads to continual activation of the HPA axis and excess cortisol release. Cortisol receptors become desensitized leading to increased activity of the pro-inflammatory immune mediators and disturbances in neurotransmitter transmission.
Several anterior pituitary hormones, and possibly a-MSH, are released by the pituitary gland in response to release factors from the hypothalamus. These are summarized in Table 16.1. In addition, the hypothalamus secretes peptidic... [Pg.394]


See other pages where Hypothalamus releasing factors is mentioned: [Pg.203]    [Pg.115]    [Pg.910]    [Pg.911]    [Pg.1273]    [Pg.447]    [Pg.348]    [Pg.92]    [Pg.702]    [Pg.239]    [Pg.317]    [Pg.56]    [Pg.361]    [Pg.361]    [Pg.364]    [Pg.690]    [Pg.691]    [Pg.267]    [Pg.403]    [Pg.315]    [Pg.332]    [Pg.340]    [Pg.341]    [Pg.270]    [Pg.272]    [Pg.148]    [Pg.211]    [Pg.890]    [Pg.891]    [Pg.54]    [Pg.1746]    [Pg.405]    [Pg.851]    [Pg.393]    [Pg.396]   
See also in sourсe #XX -- [ Pg.845 ]




SEARCH



Hypothalamus

Release factors

© 2024 chempedia.info