Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydroxyl radicals Hydroxylation

Saran M, Summer KH (2000) Assaying for hydroxyl radicals hydroxylated terephthalate is a superior fluorescence marker than hydroxylated benzoate. Free Rad Res 31 429-436 Scholes ML, Schuchmann MN, von Sonntag C (1992) Enhancement of radiation-induced base release from nucleosides in alkaline solution essential role of the O- radical. Int J Radiat Biol 61 443-449... [Pg.74]

In the drying of THF or ether (Figure 14.45), the sequence ketone —> ketyl —> hydroxylated radical —> hydroxylated organometallic compound —> alkoxide is of course not intended to convert all the ketone into product. The reaction depicted in Figure 14.46 features the same sequence of steps as Figure 14.45 (and there is thus no need to discuss their mechanism again). In the reaction of Figure 14.46, however, the reaction is intended to run to completion until all of the ketone has been consumed. The reason for this is that it is the purpose of this reaction to reduce the ketone to the alcohol. The... [Pg.583]

The close relationship between Se and vitamin E has a biochemical basis. Vitamin E acts to minimize damage to membranes inflicted by free radicals. Selenium (GSH peroxidase) acts to prevent the accumulation of HOOH, which is a source of hydroxyl radicals. Hydroxyl radicals can damage ceU membranes, as well as other components of the cell. Damage that is more closely identified with Se than with vitamin E, such as pancreatic atrophy, may be caused by HOOH-in-flicted damage to soluble components of the cell, rather than damage to cell membranes. The converse situation also holds. For example, vitamin E deficiency in rats produces fetal resorptions. This problem cannot be prevented by Se. [Pg.839]

Hydrogen peroxide reacts with fatty acids in the stomach to form hydroxyl radicals. Hydroxyl free radicals are probably one of the major factors in many degenerative diseases, including cancer. Much of the body contains enzymes that quickly break up H202 into oxygen and water. But the stomach and intestinal tract contain very little of these protective enzymes, so ulceration of the lining could theoretically develop. Ulceration can lead to hyperplasia, and hyperplasia to cancer. [Pg.37]

Beta-lactam-induced generation of superoxide and hydrogen peroxide triggers formation of further highly reactive and cytotoxic oxygen species such as hydroxyl radical. Hydroxyl radical can further contribute in the presence of iron salts, to the decomposition of hydro-... [Pg.186]

Hydroxyl Radical - Hydroxyl radical damages proteins, nucleic acids, and the fatty acids in membrane lipids (lipid peroxidation). Lipid peroxidation occurs as a chain reaction. [Pg.1185]

Sonoelectrochemistry has been employed in a number of fields such as in electroplating for the achievement of deposits and films of higher density and superior quality, in the deposition of conducting polymers, in the generation of highly active metal particles and in electroanalysis. Furtlienuore, the sonolysis of water to produce hydroxyl radicals can be exploited to initiate radical reactions in aqueous solutions coupled to electrode reactions. [Pg.1943]

NO generally catalyses tliel consumption by transfomiing hydroperoxyl radicals into highly-reactive hydroxyl radicals ... [Pg.2117]

In many of the processes, it is believed that hydroxyl radicals, OH-, are formed and that some of these unite to form hydrogen peroxide ... [Pg.277]

A similar intramolecular oxidation, but for the methyl groups C-18 and C-19 was introduced by D.H.R. Barton (1979). Axial hydroxyl groups are converted to esters of nitrous or hypochlorous acid and irradiated. Oxyl radicals are liberated and selectively attack the neighboring axial methyl groups. Reactions of the methylene radicals formed with nitrosyl or chlorine radicals yield oximes or chlorides. [Pg.286]

Humphlett and Lamon (522) have recently studied the intermediary compounds of this reaction and have shown with the help of infrared and ultraviolet spectroscopy that 176 was not present in the reaction mixture (Scheme 90) instead, a compound containing an hydroxyl radical and not a carbonyl function was present (Scheme 91). [Pg.269]

Acyl Halides. Acyl halides, in which the hydroxyl portion of a carboxyl group is replaced by a halogen, are named by placing the name of the corresponding halide after that of the acyl radical. When another group is present that has priority for citation as principal group or when the acyl halide is attached to a side chain, the prefix haloformyl- is used as, for example, in fiuoro-formyl-. [Pg.24]

As a class of compounds, the two main toxicity concerns for nitriles are acute lethality and osteolathyrsm. A comprehensive review of the toxicity of nitriles, including detailed discussion of biochemical mechanisms of toxicity and stmcture-activity relationships, is available (12). Nitriles vary broadly in their abiUty to cause acute lethaUty and subde differences in stmcture can greatly affect toxic potency. The biochemical basis of their acute toxicity is related to their metaboHsm in the body. Following exposure and absorption, nitriles are metabolized by cytochrome p450 enzymes in the Hver. The metaboHsm involves initial hydrogen abstraction resulting in the formation of a carbon radical, followed by hydroxylation of the carbon radical. MetaboHsm at the carbon atom adjacent (alpha) to the cyano group would yield a cyanohydrin metaboHte, which decomposes readily in the body to produce cyanide. Hydroxylation at other carbon positions in the nitrile does not result in cyanide release. [Pg.218]

Table 4. Median Concentration of the Ten Most Abundant Ambient Air Hydrocarbons in 39 U.S. Cities and Their Reactivity with Hydroxyl Radical... Table 4. Median Concentration of the Ten Most Abundant Ambient Air Hydrocarbons in 39 U.S. Cities and Their Reactivity with Hydroxyl Radical...
The fine antimony mist formed from the decomposition of the trichloride also participates in the flame-inhibiting process, deactivating oxygen, hydrogen, and hydroxyl radicals. [Pg.457]

Dibasic Acid Esters. Dibasic acid esters (diesters) are prepared by the reaction of a dibasic acid with an alcohol that contains one reactive hydroxyl group (see Esters, organic). The backbone of the stmcture is formed by the acid. The alcohol radicals are joined to the ends of the acid. The physical properties of the final product can be varied by using different alcohols or acids. Compounds that are typically used are adipic, azelaic, and sebacic acids and 2-ethyIhexyl, 3,5,5-trimethyIhexyl, isodecyl, and tridecyl alcohols. [Pg.264]

Polyol Esters. Polyol esters are formed by the reaction of an alcohol having two or more hydroxyl groups, eg, a polyhydric alcohol and a monobasic acid. In contrast to the diesters, the polyol in the polyol esters forms the backbone of the stmcture and the acid radicals are attached to it. The physical properties maybe varied by using different polyols or acids. Trimethylolpropane [77-99-6] C H O, and pentaerythritol [115-77-5] are... [Pg.264]

Products other than hydroperoxides are formed in oxidations by reactions such as those of equations 11 and 12. Hydroxyl radicals (from eq. 4) are very energetic hydrogen abstractors the product is water (eq. 11). [Pg.335]

Ethylene oxide is a coproduct, probably formed by the reaction of ethylene and HOO (124—126). Chain branching also occurs through further oxidation of ethylene hydroxyl radicals are the main chain centers of propagation (127). [Pg.341]

The aromatic core or framework of many aromatic compounds is relatively resistant to alkylperoxy radicals and inert under the usual autoxidation conditions (2). Consequentiy, even somewhat exotic aromatic acids are resistant to further oxidation this makes it possible to consider alkylaromatic LPO as a selective means of producing fine chemicals (206). Such products may include multifimctional aromatic acids, acids with fused rings, acids with rings linked by carbon—carbon bonds, or through ether, carbonyl, or other linkages (279—287). The products may even be phenoUc if the phenoUc hydroxyl is first esterified (288,289). [Pg.344]

N—Fe(IV)Por complexes. Oxo iron(IV) porphyrin cation radical complexes, [O—Fe(IV)Por ], are important intermediates in oxygen atom transfer reactions. Compound I of the enzymes catalase and peroxidase have this formulation, as does the active intermediate in the catalytic cycle of cytochrome P Q. Similar intermediates are invoked in the extensively investigated hydroxylations and epoxidations of hydrocarbon substrates cataly2ed by iron porphyrins in the presence of such oxidizing agents as iodosylbenzene, NaOCl, peroxides, and air. [Pg.442]

A third source of initiator for emulsion polymerisation is hydroxyl radicals created by y-radiation of water. A review of radiation-induced emulsion polymerisation detailed efforts to use y-radiation to produce styrene, acrylonitrile, methyl methacrylate, and other similar polymers (60). The economics of y-radiation processes are claimed to compare favorably with conventional techniques although worldwide iadustrial appHcation of y-radiation processes has yet to occur. Use of y-radiation has been made for laboratory study because radical generation can be turned on and off quickly and at various rates (61). [Pg.26]

The biosynthesis process, which consists essentially of radical coupling reactions, sometimes followed by the addition of water, of primary, secondary, and phenohc hydroxyl groups to quinonemethide intermediates, leads to the formation of a three-dimensional polymer which lacks the regular and ordered repeating units found in other natural polymers such as cellulose and proteins. [Pg.137]

Chemical Properties. Lignin is subject to oxidation, reduction, discoloration, hydrolysis, and other chemical and enzymatic reactions. Many ate briefly described elsewhere (51). Key to these reactions is the ability of the phenolic hydroxyl groups of lignin to participate in the formation of reactive intermediates, eg, phenoxy radical (4), quinonemethide (5), and phenoxy anion (6) ... [Pg.142]

Nitrations are highly exothermic, ie, ca 126 kj/mol (30 kcal/mol). However, the heat of reaction varies with the hydrocarbon that is nitrated. The mechanism of a nitration depends on the reactants and the operating conditions. The reactions usually are either ionic or free-radical. Ionic nitrations are commonly used for aromatics many heterocycHcs hydroxyl compounds, eg, simple alcohols, glycols, glycerol, and cellulose and amines. Nitration of paraffins, cycloparaffins, and olefins frequentiy involves a free-radical reaction. Aromatic compounds and other hydrocarbons sometimes can be nitrated by free-radical reactions, but generally such reactions are less successful. [Pg.32]

Only 20—40% of the HNO is converted ia the reactor to nitroparaffins. The remaining HNO produces mainly nitrogen oxides (and mainly NO) and acts primarily as an oxidising agent. Conversions of HNO to nitroparaffins are up to about 20% when methane is nitrated. Conversions are, however, often ia the 36—40% range for nitrations of propane and / -butane. These differences ia HNO conversions are explained by the types of C—H bonds ia the paraffins. Only primary C—H bonds exist ia methane and ethane. In propane and / -butane, both primary and secondary C—H bonds exist. Secondary C—H bonds are considerably weaker than primary C—H bonds. The kinetics of reaction 6 (a desired reaction for production of nitroparaffins) are hence considerably higher for both propane and / -butane as compared to methane and ethane. Experimental results also iadicate for propane nitration that more 2-nitropropane [79-46-9] is produced than 1-nitropropane [108-03-2]. Obviously the hydroxyl radical attacks the secondary bonds preferentially even though there are more primary bonds than secondary bonds. [Pg.36]

Oxidation of LLDPE starts at temperatures above 150°C. This reaction produces hydroxyl and carboxyl groups in polymer molecules as well as low molecular weight compounds such as water, aldehydes, ketones, and alcohols. Oxidation reactions can occur during LLDPE pelletization and processing to protect molten resins from oxygen attack during these operations, antioxidants (radical inhibitors) must be used. These antioxidants (qv) are added to LLDPE resins in concentrations of 0.1—0.5 wt %, and maybe naphthyl amines or phenylenediamines, substituted phenols, quinones, and alkyl phosphites (4), although inhibitors based on hindered phenols are preferred. [Pg.395]

In the presence of water vapor, oxygen atoms formed by uv radiation react to form hydroxyl radicals (35), which can destroy ozone catalyticaHy. [Pg.491]

Aqueous Phase. In contrast to photolysis of ozone in moist air, photolysis in the aqueous phase can produce hydrogen peroxide initially because the hydroxyl radicals do not escape the solvent cage in which they are formed (36). [Pg.491]

Hydrogen peroxide is photolyzed slowly to hydroxyl radicals, which decompose ozone. [Pg.491]

Oxygen Compounds. Although hydrogen peroxide is unreactive toward ozone at room temperature, hydroperoxyl ion reacts rapidly (39). The ozonide ion, after protonation, decomposes to hydroxyl radicals and oxygen. Hydroxyl ions react at a moderate rate with ozone (k = 70). [Pg.492]

The stability of the alkali metal ozonides increases from Li to Cs alkaline-earth ozonides exhibit a similar stability pattern. Reaction of metal ozonides with water proceeds through the intermediate formation of hydroxyl radicals. [Pg.492]

Effect of Hydroxyl Radicals on Ozone Depletion. Hydroxyl radicals, formed by reaction of ( D) oxygen atoms with water or CH, can destroy ozone catalyticahy (11,32) as shown in the following reactions. [Pg.495]

Peroxonitrous acid can decompose by two pathways isomerization to nitric acid, and dissociation into the hydroxyl radical and nitrogen dioxide. [Pg.93]

The hydroxyl radical is responsible for some of the oxidation products of organic compounds by peroxonitrous acid. [Pg.93]


See other pages where Hydroxyl radicals Hydroxylation is mentioned: [Pg.496]    [Pg.1192]    [Pg.362]    [Pg.173]    [Pg.786]    [Pg.116]    [Pg.141]    [Pg.309]    [Pg.41]    [Pg.119]    [Pg.228]    [Pg.513]    [Pg.192]    [Pg.211]    [Pg.2073]    [Pg.1026]    [Pg.24]    [Pg.29]    [Pg.498]    [Pg.369]    [Pg.456]    [Pg.287]    [Pg.44]    [Pg.336]    [Pg.337]    [Pg.220]    [Pg.276]    [Pg.266]    [Pg.379]    [Pg.493]    [Pg.494]    [Pg.496]    [Pg.502]   
See also in sourсe #XX -- [ Pg.74 , Pg.75 , Pg.76 , Pg.77 , Pg.78 , Pg.79 , Pg.80 , Pg.81 ]




SEARCH



Hydroxylation radical

Radical hydroxylations

© 2024 chempedia.info