Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydroxide products, adsorption

Addition of hydride ion from the catalyst gives the adsorbed dianion (15). The reaction is completed and product stereochemistry determined by protonation of these species from the solution prior to or concurrent with desorption. With the heteroannular enolate, (13a), both cis and trans adsorption can occur with nearly equal facility. When an angular methyl group is present trans adsorption (14b) predominates. Protonation of the latter species from the solution gives the cis product. Since the heteroannular enolate is formed by the reaction of A" -3-keto steroids with strong base " this mechanism satisfactorily accounts for the almost exclusive formation of the isomer on hydrogenation of these steroids in basic media. The optimum concentration of hydroxide ion in this reaction is about two to three times that of the substrate. [Pg.116]

A platinum-iron on silica gel catalyst was prepared by impregnating silica gel (BDH, for chromatographic adsorption) with an aqueous solution of chloroplatinic acid (analytical grade) and sodium hydroxide (analytical grade). The dry product was then impregnated by a ferrous sulfate solution (C.P. grade) and the water was removed in a rotating evaporator. The prepared catalyst contained 1% Pt, 0.7% Fe, and 2% NaOH (by... [Pg.27]

The analytical methods for a-sulfo fatty acid esters reported in the literature deal with the determination of the surfactants in different matrices like detergents or product mixtures from the fabrication. The methyl esters of a-sulfo fatty acids can be separated from a mixture of different surfactants together with sulfonated surfactants by adsorption on an anionic exchanger resin such as Dowex 1X2 or 1X8. Desorption from the exchanger resin is successful with sodium hydroxide (2%) in a 1 1 mixture of isopropanol and water [105]. [Pg.491]

Acylaminothiazolium hydroxide inner salts, bromination of, 14 cycloadditions with, 14 1H NMR spectra, 14 infrared spectra, 14 2-Acvlimino-3-alkyl(aryl)-A4 -selenazo-iines, preparation, 228 2-Acylimino-A4-selenazolines, preparation, characteristics, 264 table of products. 265 Adsorption, of thiazolocyanines, on silver halides, 78... [Pg.329]

At a nickel metal surface in alkaline aqueous medium a thin film of Ni(II) hydroxide is formed. At + 0.63 V (vs NHE) the film is oxidized to Ni(III) oxide hydroxide (a). After adsorption of the substrate at this surface (b) hydrogen atom abstraction at the a-carbon of the substrate occurs in the rate determining step (c). The intermediate radical is then further oxidized either directly (d) or indirectly (e) to the product. [Pg.172]

Exchange of varying quantities of the oxovanadium(IV) ion on Mg hectorlte resulted In hydrolysis of V at low levels of adsorption (53). The hydrolyzed product that was adsorbed on the clay surface was interpreted as having a ligand environment that was partially aqueous and partially hydroxide in nature. With increasing V... [Pg.350]

A less specific type of adsorption can sometimes be used if the required product forms insoluble hydroxides but the target element does not. In this case, the solution is made alkaline, and the carrier-free radio-colloidal product is readily absorbed on to filter paper in good yield, when, after washing, it can subsequently be dissolved in acid. This has been used for the separation of magnesium from aluminium, scandium from calcium and for several other elements (17), (26), (42), (44), (66), (103), (104), (105), (106). [Pg.12]

In the 2nd period ranging from the 1930s to the 1950s, basic research on flotation was conducted widely in order to understand the principles of the flotation process. Taggart and co-workers (1930, 1945) proposed a chemical reaction hypothesis, based on which the flotation of sulphide minerals was explained by the solubility product of the metal-collector salts involved. It was plausible at that time that the floatability of copper, lead, and zinc sulphide minerals using xanthate as a collector decreased in the order of increase of the solubility product of their metal xanthate (Karkovsky, 1957). Sutherland and Wark (1955) paid attention to the fact that this model was not always consistent with the established values of the solubility products of the species involved. They believed that the interaction of thio-collectors with sulphides should be considered as adsorption and proposed a mechanism of competitive adsorption between xanthate and hydroxide ions, which explained the Barsky empirical relationship between the upper pH limit of flotation and collector concentration. Gaudin (1957) concurred with Wark s explanation of this phenomenon. Du Rietz... [Pg.1]

The amount of liberated carbon dioxide was equimolar to the HCl adsorption. Rivin confirmed also that hydrogen peroxide is formed by reaction of carbon black with formic acid in the presence of oxygen. Physically adsorbed hydrochloric acid was removed by washing with dioxane. The remaining chloride ions on the surface were replaced by hydroxide ions on treatment with sodium hydroxide. The reaction was formulated as production of a carbinol ... [Pg.210]

Large concentrations of Fe + develop in the soil solution in the weeks following flooding, often several mM or tens of mM (Figure 4.5). Calculations with chemical equilibrium models show that the ion activity products of pure ferrous hydroxides, carbonates and other minerals are often exceeded 100-fold (Neue and Bloom, 1989). Evidently precipitation of these minerals is inhibited, probably as a result of adsorption of foreign solutes, such as dissolved organic matter and phosphate ions, onto nucleation sites (Section 3.7). However, once a sufficient supersaturation has been reached there is a rapid precipitation of amorphous solid phases, which may later re-order to more crystalline forms. Only a small part of the Fe(II) formed in reduction remains in solution the bulk is sorbed in exchangeable forms or, eventually, precipitated. [Pg.112]

The activated Ba(OH)2 was used as a basic catalyst for the Claisen-Schmidt (CS) condensation of a variety of ketones and aromatic aldehydes (288). The reactions were performed in ethanol as solvent at reflux temperature. Excellent yields of the condensation products were obtained (80-100%) within 1 h in a batch reactor. Reaction rates and yields were generally higher than those reported for alkali metal hydroxides as catalysts. Neither the Cannizaro reaction nor self-aldol condensation of the ketone was observed, a result that was attributed to the catalyst s being more nucleophilic than basic. Thus, better selectivity to the condensation product was observed than in homogeneous catalysis under similar conditions. It was found that the reaction takes place on the catalyst surface, and when the reactants were small ketones, the rate-determining step was found to be the surface reaction, whereas with sterically hindered ketones the adsorption process was rate determining. [Pg.289]

Ferric orthoarsenite cannot be prepared directly from ferric hydroxide and arsenious oxide.4 The brown product obtained by shaking freshly precipitated ferric hydroxide with an aqueous solution of arsenious oxide has been described 5 as a basic ferric arsenite of composition 4Fe203.As203.5H20. A similar substance is obtained by adding aqueous arsenious oxide or sodium arsenite to ferric acetate solution. If ferric chloride, sulphate or nitrate is used, the ferric salt is not completely precipitated. The product is oxidised in moist air, and decomposes when heated. It is very doubtful whether this is a chemical individual, however, for it has been shown that the removal of arsenious oxide from the solution by the ferric hydroxide is due to adsorption, the amount removed depending upon the conditions and the age of the adsorbent. This subject is discussed more fully on p. 154. [Pg.168]

Precipitation of Hafnium Hydroxide. In order to interpret the adsorption data it was necessary to determine the conditions which lead to the precipitation of hafnium hydroxide. It is not usually advisable to depend on the solubility product because the information on this quantity is often unreliable for hydroxides of polyvalent metal ions. In addition, "radiocolloids may apparently form much below saturation conditions in radioactive isotope solutions. In the specific case of hafnium hydroxide only two measurements of the solubility seem to have been reported. According to Larson and Gammill (16) K8 = [Hf(OH)22+] [OH ]2 — 4 X 10"26 assuming the existence of only one hydrolyzed species Hf(OH)22+. The second reported value is Kso = [Hf4+] [OH-]4 = 3.7 X 10 55 (15). If one uses the solubility data by Larson and Gammill (Ref. 16, Tables I and III) and takes into consideration all monomeric hafnium species (23) a KBO value of 4 X 10 58 is calculated. [Pg.57]

Alternatively, several workers have shown that not only is the soluble, zero-charged hydrolysis product considerably more surface active than the free (aquo) ion but also a polymeric charged or uncharged hydrolysis product may be formed at the solid-liquid interface at conditions well below saturation or precipitation in solution. Hall (5) has considered the coagulation of kaolinite by aluminum (III) and concluded that surface precipitates related to hydrated aluminum hydroxide control the adsorption-coagulation behavior. Similarly Healy and Jellett (6) have postulated that the polymeric, soluble, uncharged Zn(OH)2 polymer can be nucleated catalytically at ZnO-H20 interfaces and will flocculate the colloidal ZnO via a bridging mechanism. [Pg.71]


See other pages where Hydroxide products, adsorption is mentioned: [Pg.157]    [Pg.159]    [Pg.500]    [Pg.388]    [Pg.11]    [Pg.159]    [Pg.195]    [Pg.199]    [Pg.564]    [Pg.174]    [Pg.287]    [Pg.345]    [Pg.313]    [Pg.353]    [Pg.172]    [Pg.69]    [Pg.311]    [Pg.32]    [Pg.270]    [Pg.171]    [Pg.353]    [Pg.127]    [Pg.129]    [Pg.171]    [Pg.292]    [Pg.103]    [Pg.669]    [Pg.266]    [Pg.159]    [Pg.174]    [Pg.154]    [Pg.53]   


SEARCH



Productive adsorption

© 2024 chempedia.info