Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydroxide monomer polymerization

Returning to the polymerization of itaconic acid in an aqueous system, Tate [98, 99] indicates that 32% solution of itaconic acid in water with 2% of potassium persulfate (calculated on the monomer), upon reaction at 60 C for 47 hr, gave 93% conversion (by titration we presume this to be a double-bond determination for unreacted monomer). Partially neutralized itaconic acid (64% acid in water, diluted to 36% during the reaction, and 40% neutralized with sodium hydroxide) on polymerization in the presence of 1% of potassium persulfate (calculated on itaconic acid) at 60°C for 48 hr afforded only a 72% conversion (by titration). [Pg.339]

Further deprotonation, dehydration, and polymerization of monomers and dimers may yield ringlike stmctures of hydroxy—aluminum complexes (10). Coalescence of ring compounds into layers by further growth results in the formation of crystalline aluminum hydroxide at pH 6, the point of minimum aqueous solubiUty. [Pg.136]

Calcium Chelates (Salicylates). Several successhil dental cements which use the formation of a calcium chelate system (96) were developed based on the reaction of calcium hydroxide [1305-62-0] and various phenohc esters of sahcyhc acid [69-72-7]. The calcium sahcylate [824-35-1] system offers certain advantages over the more widely used zinc oxide—eugenol system. These products are completely bland, antibacterial (97), facihtate the formation of reparative dentin, and do not retard the free-radical polymerization reaction of acryhc monomer systems. The principal deficiencies of this type of cement are its relatively high solubihty, relatively low strength, and low modulus. Less soluble and higher strength calcium-based cements based on dimer and trimer acid have been reported (82). [Pg.475]

Horhold et al. and Lenz et al. [94,95]. The polycondensation provides the cyano-PPVs as insoluble, intractable powders. Holmes et al. [96], and later on Rikken et al. [97], described a new family of soluble, well-characterized 2,5-dialkyl- and 2,5-dialkoxy-substituted poly(pflrfl-phenylene-cyanovinylene)s (74b) synthesized by Knoevenagel condensation-polymerization of the corresponding alkyl-or alkoxy-substituted aromatic monomers. Careful control of the reaction conditions (tetra-n-butyl ammonium hydroxide as base) is required to avoid Michael-type addition. [Pg.199]

Kreuter and Speiser [77] developed a dispersion polymerization producing adjuvant nanospheres of polymethylmethacrylate) (PMMA). The monomer is dissolved in phosphate buffered saline and initiated by gamma radiation in the presence and absence of influenza virions. These systems showed enhanced adjuvant effect over aluminum hydroxide and prolonged antibody response. PMMA particles could be distinguished by TEM studies and the particle size was reported elsewhere to be 130 nm by photon correlation spectroscopy [75], The particle size could be reduced, producing monodisperse particles by inclusion of protective colloids, such as proteins or casein [40], Poly(methylmethacrylate) nanoparticles are also prepared... [Pg.4]

McKelvey etal. (1959) investigated the reaction of epoxides with cellulose in alkaline conditions, reporting that alkaline cellulose reacted readily once the concentration of sodium hydroxide was sufficiently high. However, no evidence was found of reaction between cotton yarn and cellulose with a range of epoxides under a variety of reaction conditions. It was concluded that the apparent reactivity of cellulose with epoxides was primarily due to alkaline swelling of the cellulose, self-polymerization of the epoxide monomers then occurring within the interior structure of the fibres. It was also noted that the reactivity with phenol OH groups was very low (e.g. only 1 % conversion of ethylene oxide with various phenols). [Pg.90]

Soap. The reaction product of a fatty acid ester and a metal hydroxide, usually sodium hydroxide. Soap lowers the surface tension of water, permitting emulsification of soil-bearing fats if the soap is used for washing, of monomers in solution if the soap is used for emulsification in a polymerization process. 6 e saponification. [Pg.414]

Considerable effort has been carried out by different groups in the preparation of amphiphihc block copolymers based on polyfethylene oxide) PEO and an ahphatic polyester. A common approach relies upon the use of preformed co- hydroxy PEO as macroinitiator precursors [51, 70]. Actually, the anionic ROP of ethylene oxide is readily initiated by alcohol molecules activated by potassium hydroxide in catalytic amounts. The equimolar reaction of the PEO hydroxy end group (s) with triethyl aluminum yields a macroinitiator that, according to the coordination-insertion mechanism previously discussed (see Sect. 2.1), is highly active in the eCL and LA polymerization. This strategy allows one to prepare di- or triblock copolymers depending on the functionality of the PEO macroinitiator (Scheme 13a,b). Diblock copolymers have also been successfully prepared by sequential addition of the cyclic ether (EO) and lactone monomers using tetraphenylporphynato aluminum alkoxides or chloride as the initiator [69]. [Pg.22]

A variety of basic (nucleophilic) initiators have been used to initiate anionic polymerization [Bywater, 1975, 1976, 1985 Fontanille, 1989 Hsieh and Quirk, 1996 Morton, 1983 Morton and Fetters, 1977 Quirk, 1995, 1998, 2002 Richards, 1979 Szwarc, 1983 Young et al., 1984]. These include covalent or ionic metal amides such as NaNFU and LiN(C2H5)2, alkoxides, hydroxides, cyanides, phosphines, amines, and organometallic compounds such as n-C4H9Li and <)>MgBr. Initiation involves the addition to monomer of a nucleophile (base), either a neutral (B ) or negative (B ) species. [Pg.412]

The initiator required to polymerize a monomer depends on the reactivity of the monomer toward nucleophilic attack. Monomer reactivity increases with increasing ability to stabilize the carbanion charge. Very strong nucleophiles such as amide ion or alkyl carbanion are needed to polymerize monomers, such as styrene and 1,3-butadiene, with relatively weak electron-withdrawing substituents. Weaker nucleophiles, such as alkoxide and hydroxide... [Pg.413]

This finding is a significant improvement over aqueous ROMP systems using aqueous ROMP catalysts. The propagating species in these reactions is stable. The synthesis of water-soluble block copolymers can be achieved via sequential monomer addition. The polymerization is not of living type in the absence of acid. In addition to eliminating hydroxide ions, which would cause catalyst decomposition, the catalyst activity is also enhanced by the protonation of the phosphine ligands. Remarkably, the acids do not react with the ruthenium alkylidene bond. [Pg.13]


See other pages where Hydroxide monomer polymerization is mentioned: [Pg.252]    [Pg.305]    [Pg.38]    [Pg.236]    [Pg.541]    [Pg.157]    [Pg.879]    [Pg.331]    [Pg.335]    [Pg.337]    [Pg.168]    [Pg.115]    [Pg.343]    [Pg.123]    [Pg.777]    [Pg.877]    [Pg.24]    [Pg.76]    [Pg.34]    [Pg.395]    [Pg.661]    [Pg.123]    [Pg.133]    [Pg.140]    [Pg.292]    [Pg.296]    [Pg.217]    [Pg.298]    [Pg.446]    [Pg.578]    [Pg.317]    [Pg.641]    [Pg.46]    [Pg.157]    [Pg.394]    [Pg.234]    [Pg.295]    [Pg.181]    [Pg.271]    [Pg.157]   
See also in sourсe #XX -- [ Pg.129 ]




SEARCH



Monomers, polymerization

© 2024 chempedia.info