Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrophilic reaction

An interesting attempt to overcome this problem is the design of simplified systems which try to reproduce the activity of natural enzymes (biomimetic catalysts). This approach has produced, e.g., impressive advances in the chemistry of synthetic porphyrins and in understanding the activity of some enzymes e.g. cytochrome P-450) which catalyzes oxidation reactions by an iron-porphyrin centre. Furthermore, interesting similarities have been noticed between enzymes and completely different catalysts. For instance, selective adsorption in the channels of some zeolites provide a confined, relatively hydrophobic medium even in aqueous solvent (Annex 2). This strongly resembles the active sites of several enzymes (including cytochrome P-450) that are deeply buried in hydrophobic pockets where lipophilic substrates are readily oxidized. The more hydrophilic reaction products are promptly released into... [Pg.75]

Reduction of the Vitamin E Radical by Ascorbate Asdiscussed in Section 4.3.1, one of the major roles of vitamin E is as a radical-trapping antioxidant in membranes and lipoproteins. a-Tocopherol reacts with lipid peroxides forming the a-tocopheroxyl radical, which reacts with ascorbate in the aqueous phase, regenerating a-tocopherol, and forming monodehydroascorbate. Vitamin C may have a vitamin E-sparing antioxidant action, coupling lipophilic and hydrophilic reactions. [Pg.371]

Over-oxidation problems are solved efficiently in biological systems by segregating catalysts and products into different environments. So, for instance, the active sites of several oxygenases are buried deeply into hydrophobic pockets where lipophilic substrates are readily oxidized, while the more hydrophilic reaction products, when released into the surrounding aqueous environment, do not have further access to the catalytic site [12]. [Pg.517]

The efficiency of this transfer mechanism without fusion is linked to the lifetime of the encounter. Note that these processes must take place before the complexation reaction can occur. Also, it must be considered that not every encounter successfully leads to a fusion or to an exchange of droplet contents. However, there is a certain efficiency leading to the maximum rate possible for this hydrophilic reaction carried out in an oil-in-water microemulsion medium. [Pg.525]

When 1/3 cylindrical micelles. Like those that make spherical micelles, molecules that form cylindrical micelles usually have single chains. Their optimal interface areas, however, are smaller. We note that amphiphiles that usually form spherical aggregates can be induced to form cylinders if a salt is added to the solution, because the ions in the salt weaken the hydrophilic reaction of the polar heads. [Pg.25]

The third family (c. in Figure 9.1) less widespread, derived from the alkylphenols, offers as with the succinimides several possibilities of modification to the ratio of hydrophilic and lipophilic groups. Mannich s reaction of the alkyl-phenols also provides additives for lubricating oils. [Pg.349]

Comparison of the water-induced acceleration of the reaction of 2.4a with the corresponding effect on 2.4g is interesting, since 2.4g contains an ionic group remote from the reaction centre. The question arises whether this group has an influence on the acceleration of the Diels-Alder reaction by water. Comparison of the data in Table 2.1 demonstrates that this is not the case. The acceleration upon going from ethanol to water amounts a factor 105 ( 10) for 2.4a versus 110 ( 11) for 2.4g. Apparently, the introduction of a hydrophilic group remote from the reaction centre has no effect on the aqueous acceleration of the Diels-Alder reaction. [Pg.52]

The rate of the Lewis-acid catalysed Diels-Alder reaction in water has been compared to that in other solvents. The results demonstrate that the expected beneficial effect of water on the Lewis-acid catalysed reaction is indeed present. However, the water-induced acceleration of the Lewis-add catalysed reaction is not as pronounced as the corresponding effect on the uncatalysed reaction. The two effects that underlie the beneficial influence of water on the uncatalysed Diels-Alder reaction, enforced hydrophobic interactions and enhanced hydrogen bonding of water to the carbonyl moiety of 1 in the activated complex, are likely to be diminished in the Lewis-acid catalysed process. Upon coordination of the Lewis-acid catalyst to the carbonyl group of the dienophile, the catalyst takes over from the hydrogen bonds an important part of the activating influence. Also the influence of enforced hydrophobic interactions is expected to be significantly reduced in the Lewis-acid catalysed Diels-Alder reaction. Obviously, the presence of the hydrophilic Lewis-acid diminished the nonpolar character of 1 in the initial state. [Pg.174]

Hydrophilic (Section 19 5) Literally water loving a term applied to substances that are soluble in water usually be cause of their ability to form hydrogen bonds with water Hydrophobic (Section 19 5) Literally water hating a term applied to substances that are not soluble in water but are soluble in nonpolar hydrocarbon like media Hydroxylation (Section 15 5) Reaction or sequence of reac tions in which an alkene is converted to a vicinal diol Hyperconjugation (Section 4 10) Delocalization of a electrons... [Pg.1286]

AH corrosion inhibitors in use as of this writing are oil-soluble surfactants (qv) which consist of a hydrophobic hydrocarbon backbone and a hydrophilic functional group. Oil-soluble surfactant-type additives were first used in 1946 by the Sinclair Oil Co. (38). Most corrosion inhibitors are carboxyhc acids (qv), amines, or amine salts (39), depending on the types of water bottoms encountered in the whole distribution system. The wrong choice of inhibitors can lead to unwanted reactions. Eor instance, use of an acidic corrosion inhibitor when the water bottoms are caustic can result in the formation of insoluble salts that can plug filters in the distribution system or in customers vehicles. Because these additives form a strongly adsorbed impervious film at the metal Hquid interface, low Hquid concentrations are usually adequate. Concentrations typically range up to 5 ppm. In many situations, pipeline companies add their own corrosion inhibitors on top of that added by refiners. [Pg.186]

Polyall lene Oxide Block Copolymers. The higher alkylene oxides derived from propjiene, butylene, styrene (qv), and cyclohexene react with active oxygens in a manner analogous to the reaction of ethylene oxide. Because the hydrophilic oxygen constitutes a smaller proportion of these molecules, the net effect is that the oxides, unlike ethylene oxide, are hydrophobic. The higher oxides are not used commercially as surfactant raw materials except for minor quantities that are employed as chain terminators in polyoxyethylene surfactants to lower the foaming tendency. The hydrophobic nature of propylene oxide units, —CH(CH2)CH20—, has been utilized in several ways in the manufacture of surfactants. Manufacture, properties, and uses of poly(oxyethylene- (9-oxypropylene) have been reviewed (98). [Pg.254]

Skin. The skin may become contaminated accidentally or, in some cases, materials may be deHberately appHed. Skin is a principal route of exposure in the industrial environment. Local effects that are produced include acute or chronic inflammation, allergic reactions, and neoplasia. The skin may also act as a significant route for the absorption of systemicaHy toxic materials. Eactors influencing the amount of material absorbed include the site of contamination, integrity of the skin, temperature, formulation of the material, and physicochemical characteristics, including charge, molecular weight, and hydrophilic and lipophilic characteristics. Determinants of percutaneous absorption and toxicity have been reviewed (32—35,42,43,46—49). [Pg.229]

Poly(vinyl butyral), prepared by reacting poly(vinyl alcohol) with -butyraldehyde, finds wide appHcation as the interlayer in safety glass and as an adhesive for hydrophilic surfaces (161). Another example is the reaction of poly(vinyl alcohol) with formaldehyde to form poly(vinyl formal), used in the production of synthetic fibers and sponges (162). [Pg.481]

A series of sorbitol-based nonionic surfactants are used ia foods as water-ia-oil emulsifiers and defoamers. They are produced by reaction of fatty acids with sorbitol. During reaction, cycHc dehydration as well as esterification (primary hydroxyl group) occurs so that the hydrophilic portion is not only sorbitol but also its mono- and dianhydride. The product known as sorbitan monostearate [1338-41 -6] for example, is a mixture of partial stearic and palmitic acid esters (sorbitan monopalmitate [26266-57-9]) of sorbitol, 1,5-anhydro-D-glucitol [154-58-8] 1,4-sorbitan [27299-12-3] and isosorbide [652-67-5]. Sorbitan esters, such as the foregoing and also sorbitan monolaurate [1338-39-2] and sorbitan monooleate [1338-43-8], can be further modified by reaction with ethylene oxide to produce ethoxylated sorbitan esters, also nonionic detergents FDA approved for food use. [Pg.480]

Competitive Extraetion of Anions. The successful extraction of the necessary anion into the organic phase is cmcial for PTC. Often three anions compete for the catalyst cation the one that is to react, the one formed in the reaction, and the one brought in originally with the catalyst. Table 1 hsts the widely differing values of tetra-rr-butylammonium salts. The big difference in the halide series is noteworthy and preparatively important. Hydroxide is 10 times mote difficult to extract than chloride (11) and the divalent and trivalent anions and PO " are stiU more hydrophilic. Thus... [Pg.188]


See other pages where Hydrophilic reaction is mentioned: [Pg.429]    [Pg.226]    [Pg.441]    [Pg.443]    [Pg.371]    [Pg.92]    [Pg.371]    [Pg.1546]    [Pg.1560]    [Pg.226]    [Pg.54]    [Pg.429]    [Pg.226]    [Pg.441]    [Pg.443]    [Pg.371]    [Pg.92]    [Pg.371]    [Pg.1546]    [Pg.1560]    [Pg.226]    [Pg.54]    [Pg.547]    [Pg.27]    [Pg.27]    [Pg.175]    [Pg.775]    [Pg.361]    [Pg.273]    [Pg.210]    [Pg.274]    [Pg.461]    [Pg.224]    [Pg.245]    [Pg.252]    [Pg.150]    [Pg.154]    [Pg.155]    [Pg.186]    [Pg.188]    [Pg.2061]    [Pg.354]    [Pg.449]    [Pg.78]    [Pg.101]    [Pg.562]   
See also in sourсe #XX -- [ Pg.517 ]




SEARCH



Browning reactions hydrophilization

Hydrophilic anion reactions, micellar

Hydrophilic anion reactions, micellar effects

Water-based reactions hydrophilic ligands

© 2024 chempedia.info