Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrolysis kinetics reaction mechanisms

The kinetics of hydrolysis reactions maybe first-order or second-order, depending on the reaction mechanism. However, second-order reactions may appear to be first-order, ie, pseudo-first-order, if one of the reactants is not consumed in the reaction, eg, OH , or if the concentration of active catalyst, eg, reduced transition metal, is a small fraction of the total catalyst concentration. [Pg.218]

Knowledge of the mechanism enables one to obtain more insight into the various factors which determine the extent of reaction along both pathways. In this chapter special attention will be given to the kinetics and mechanism of the hydrolysis of simple enamines.f... [Pg.102]

The differenee in reaction rates of the amino alcohols to isobutyraldehyde and the secondary amine in strong acidic solutions is determined by the reactivity as well as the concentration of the intermediate zwitterions [Fig. 2, Eq. (10)]. Since several of the equilibrium constants of the foregoing reactions are unknown, an estimate of the relative concentrations of these dipolar species is difficult. As far as the reactivity is concerned, the rate of decomposition is expected to be higher, according as the basicity of the secondary amines is lower, since the necessary driving force to expel the amine will increase with increasing basicity of the secondary amine. The kinetics and mechanism of the hydrolysis of enamines demonstrate that not only resonance in the starting material is an important factor [e.g., if... [Pg.112]

The reaction under investigation is the enzymatic hydrolysis of racemic ethoxyethyl-ibuprofen ester. The (R)-ester is not active in the above reaction,1-3, thus simplifying the reaction mechanism, as shown in Figure 5.13. Because both enantiomers are converted according to fust-order kinetics, the conversion of one enantiomer is independent of the conversion of the other.4... [Pg.130]

Hydrolysis of oximes catalyzed by transition-metal complexes has not been studied prior to a report by Kostic et al. They have reported kinetics of hydrolysis of acetoxime to acetone catalyzed by two palladium(II) complexes, identified active species in the hydrolysis reaction, proposed a reaction mechanism, and fully characterized a bis(acetoxime) complex that is relatively stable toward hydrolysis.458... [Pg.595]

A review of recent advances in chromium chemistry (82) supplements earlier comprehensive reviews of kinetics and mechanisms of substitution in chromium(III) complexes (83). This recent review tabulates kinetic parameters for base hydrolysis of some Cr(III) complexes, mentions mechanisms of formation of polynuclear Cr(III) species, and discusses current views on the question of the mechanism(s) of such reactions. It seems that both CB (conjugate base) and SVj2 mechanisms operate, depending on the situation. The important role played by ionpairing in base hydrolysis of macrocyclic complexes of chromium(III) has been stressed. This is evidenced by the observed order, greater... [Pg.81]

Ring opening reactions are the main feature of a brief review (though with 69 references) of kinetics and mechanisms of hydrolysis and substitution reactions of platinum(II) complexes (219). [Pg.100]

The 42-residue peptide KO-42 folds in solution into a hairpin helix-loop-helix motif that dimerizes to form a four-helix bundle. On the surface of the folded motif there are six histidines with assigned piC values in the range 5.2 to 7.2 (Fig. 1) and the second-order rate constant for the hydrolysis of mono-p-nitro-phenyl fumarate is 1140 times larger than that of the 4-methylimidazole-cataly-zed reaction at pH 4.1 and 290 K [13]. The reaction mechanism was found to be pH dependent as the kinetic solvent isotope effect was 2.0 at pH 4.7 and 1.0 at pH 6.1 and the pH dependence showed that the reaction rate depended on residues in their unprotonated form with piCj, values around 5. It was thus established that there are functional cooperative reactive sites that contain protonated and unprotonated His residues. [Pg.68]

Reactions of a wide range of substituted phenyl acetates with six a-effect nucleophiles have revealed little or no difference, compared with phenolate nucleophiles, in the values of the Leffler parameters. As a result, the case for a special electronic explanation of the a-effect is considered unproven. Studies of the kinetics and mechanism of the aminolysis and alkaline hydrolysis of a series of 4-substituted (21) and 6-substituted naphthyl acetates (22) have revealed that, for electron-withdrawing substituents, aminolysis for both series proceeds through an unassisted nucleophilic substitution pathway. [Pg.40]

Structures have been determined for [Fe(gmi)3](BF4)2 (gmi = MeN=CHCF[=NMe), the iron(II) tris-diazabutadiene-cage complex of (79) generated from cyclohexanedione rather than from biacetyl, and [Fe(apmi)3][Fe(CN)5(N0)] 4F[20, where apmi is the Schiff base from 2-acetylpyridine and methylamine. Rate constants for mer fac isomerization of [Fe(apmi)3] " were estimated indirectly from base hydrolysis kinetics, studied for this and other Schiff base complexes in methanol-water mixtures. The attenuation by the —CH2— spacer of substituent effects on rate constants for base hydrolysis of complexes [Fe(sb)3] has been assessed for pairs of Schiff base complexes derived from substituted benzylamines and their aniline analogues. It is generally believed that iron(II) Schiff base complexes are formed by a template mechanism on the Fe " ", but isolation of a precursor in which two molecules of Schiff base and one molecule of 2-acetylpyridine are coordinated to Fe + suggests that Schiff base formation in the presence of this ion probably occurs by attack of the amine at coordinated, and thereby activated, ketone rather than by a true template reaction. ... [Pg.442]

Reaction kinetics and mechanisms for oxidation of [Fe(diimine)2(CN)2], [Fe(diimine)(CN)4] (diimine = bipy or phen) (and indeed [Fe(CN)6] ) by peroxoanions such as (S20g, HSOs", P20g ) have been reviewed. Reactivity trends have been established, and initial state— transition state analyses carried out, for peroxodisulfate oxidation of [Fe(bipy)2(CN)2], [Fe(bipy)(CN)4] , and [Fe(Me2bsb)(CN)4] in DMSO—water mixtures. Whereas in base hydrolysis of iron(II)-diimine complexes reactivity trends in binary aqueous solvent mixtures are generally determined by hydroxide solvation, in these peroxodisulfate oxidations solvation changes for both partners affect the observed pattern. ... [Pg.456]

A review of iron(III) in aqueous solution covers hydrolysis and polymerization, the formation and dissociation of binuclear species, and kinetics and mechanisms of water exchange and complex formation. " Kinetic and equilibrium data for hydrolytic reactions of iron(III) have been conveniently assembled. Reviews of hydrolysis of Fe aq, and subsequent precipitation of hydrated oxide-hydroxide species, cover a very wide range of media, from geochemistry to biology to human metabolism. Added anions or pH variation can affect which form... [Pg.485]

The reaction of 14 may remind one of the well-established reaction mechanism for chymotrypsin (Fig. 5) (20). By comparing the acyl-trans-fer reaction of complex 14 with that of chymotrypsin 17, we find that the alcoholic nucleophiles in 14 and 17 are activated by Zn11—OH- and imidazole (in a triad), respectively. Several common features should be pointed out (i) Both reactions proceed via two-step reaction (i.e., double displacement), (ii) The basicity of Zn11—OH (pKa = 7.7) is somewhat similar to that of imidazole (plfa = ca. 7). (iii) The initial acyl-transfer reactions to alcoholic OH groups are rate determining, (iv) In NA hydrolysis with chymotrypsin, the pH dependence of both the acylation (17 — 18) and the deacylation (19 — 17) steps point to the involvement of a general base or nucleophile with a kinetically revealed piFCa value of ca. 7. A major difference here is that while the... [Pg.237]

Having established that 1 catalyzes the hydrolysis of orthoformates in basic solution, the reaction mechanism was probed. Mechanistic studies were performed using triethyl orthoformate (70) as the substrate at pH 11.0 and 50 °C. First-order substrate consumption was observed under stoichiometric conditions. Working under saturation conditions (pseudo-0 order in substrate), kinetic studies revealed that the reaction is also first order in [H+] and in [1]. When combined, these mechanistic studies establish that the rate law for this catalytic hydrolysis of ortho-formates by host 1 obeys the overall termolecular rate law rate = k[H+][Substrate][l], which reduces to rate = k [H ][l] at saturation. [Pg.186]

We conclude that the neutral substrate enters 1 to form a host-guest complex, leading to the observed substrate saturation. The encapsulated substrate then undergoes encapsulation-driven protonation, presumably by deprotonation of water, followed by acid-catalyzed hydrolysis inside 1, during which two equivalents of the corresponding alcohol are released. Finally, the protonated formate ester is ejected from 1 and further hydrolyzed by base in solution. The reaction mechanism (Scheme 7.7) shows direct parallels to enzymes that obey Michaelis-Menten kinetics due to the initial pre-equilibrium followed by a first-order rate-limiting step. [Pg.186]

Base-Catalyzed Hydrolysis. Let us now look at the reaction of a carboxylic ester with OH", that is, the base-catalyzed hydrolysis. The reaction scheme for the most common reaction mechanism is given in Fig. 13.11. As indicated in reaction step 2, in contrast to the acid-catalyzed reaction (Fig. 13.10), the breakdown of the tetrahedral intermediate, I, may be kinetically important. Thus we write for the overall reaction rate ... [Pg.523]

This chapter deals with the kinetics and mechanisms of the hydrolysis of carboxylic acid derivatives of general formula RCOX. These include carboxylic acid halides, amides, and anhydrides with small sections on carboxylic acid cyanides etc. Many recent developments in this field have been made with acid derivatives in which R is not an aliphatic or aromatic group, for example, carbamic acid derivatives, and these are reported where relevant, as are reactions such as ethanolysis, aminolysis, etc. where they throw light on the mechanisms of hydrolysis. [Pg.209]

Hydrolysis and condensation reactions of silanes may be considered in the broad category of nucleophilic substitutions at silicon. The common nomenclature for these reactions is SN.V-Si, where A represents the kinetic order or molecularity, Si indicates that silicon is the reaction center, and SN indicates that the reaction is a nucleophilic substitution. Nucleophilic reactions at silicon have been reviewed thoroughly and have been the subject of fundamental studies by several laboratories over the last three decades [33]. The literature is not as voluminous as the literature on the corresponding reactions at carbon. A general mechanistic view of these reactions has, however, emerged. There are many parallels to carbon-centered reaction mechanisms. One distinction from carbon-centered reactions is clearly apparent. Silicon is able to form relatively stable higher coordinated (pentavalent) intermediates carbon is not [33]. [Pg.121]

Interest in this method of preparation of silicates has led us to study the mechanisms involved in the various reactions. In a previous paper we investigated the kinetics and mechanism of the alcoholysis of TMOS [13]. Because alkoxysilanes are important in the formation of silicones and silicates, their hydrolysis and subsequent condensation have been widely studied. Excellent reviews of the field can be found in The Siloxane Bond by Voronkov,... [Pg.161]

The NH acidities of some sterically hindered ureas, namely the ureido esters (93), have been reported.81 The kinetics and mechanism of the alkaline hydrolysis of urea and sodium cyanate, NaCNO, have been studied at a number of temperatures.82 Urea hydrolysis follows an irreversible first-order consecutive reaction path. Tetrahedral intermediates are not involved and an elimination-addition mechanism operates. Sodium cyanate follows irreversible pseudo-first-order kinetics. The decomposition of the carcinogen /V-mcthyl-/V-nitrosourca (19) was dealt with earlier.19 The pyrolysis of /V-acctylurca goes by a unimolecular first-order elimination reaction.83... [Pg.51]


See other pages where Hydrolysis kinetics reaction mechanisms is mentioned: [Pg.282]    [Pg.6]    [Pg.228]    [Pg.193]    [Pg.66]    [Pg.30]    [Pg.348]    [Pg.85]    [Pg.43]    [Pg.259]    [Pg.103]    [Pg.155]    [Pg.105]    [Pg.222]    [Pg.24]    [Pg.2]    [Pg.85]    [Pg.185]    [Pg.228]    [Pg.245]    [Pg.35]    [Pg.515]    [Pg.49]    [Pg.348]    [Pg.641]    [Pg.563]    [Pg.159]    [Pg.446]    [Pg.59]   
See also in sourсe #XX -- [ Pg.291 ]




SEARCH



Hydrolysis reactions

Hydrolysis reactions kinetics

Kinetic hydrolysis

Kinetic mechanism

Kinetic reaction mechanism

Kinetics mechanisms

Kinetics reaction mechanisms

Mechanical reaction kinetics

Mechanism hydrolysis

© 2024 chempedia.info