Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrolysis from alkynes

Most studies on nickel-catalyzed domino reactions have been performed by Ikeda and colleagues [287], who observed that alkenyl nickel species, obtained from alkynes 6/4-41 and a (jr-allyl) nickel complex, can react with organometallics as 6/4-42. If this reaction is carried out in the presence of enones 6/4-43 and TM SCI, then coupling products such as 6/4-44 are obtained. After hydrolysis, substituted ketones 6/4-45 are obtained (Scheme 6/4.12). With cyclic and (5-substituted enones the use of pyridine is essential. Usually, the regioselectivity and stereoselectivity of the reactions is very high. On occasion, alkenes can be used instead of alkynes, though this is rather restricted as only norbornene gave reasonable results [288]. [Pg.465]

The nickel-catalyzed carbonylation of allyl halides in the presence of alkynes and water produces 2,5-dienoic acids in good yields under very mild conditions (equation 25). This remarkable four-component reaction probably involves oxidative addition of the allyl chloride to the catalyst, followed by successive insertions of alkyne and CO, and finally hydrolysis. The carbon-carbon double bond derived from alkyne insertion is thus conjugated with the carbonyl group and generally has the (Z)-configuration. [Pg.1027]

A synthetically useful virtue of enol triflates is that they are amenable to palladium-catalyzed carbon-carbon bond-forming reactions under mild conditions. When a solution of enol triflate 21 and tetrakis(triphenylphosphine)palladium(o) in benzene is treated with a mixture of terminal alkyne 17, n-propylamine, and cuprous iodide,17 intermediate 22 is formed in 76-84% yield. Although a partial hydrogenation of the alkyne in 22 could conceivably secure the formation of the cis C1-C2 olefin, a chemoselective hydrobora-tion/protonation sequence was found to be a much more reliable and suitable alternative. Thus, sequential hydroboration of the alkyne 22 with dicyclohexylborane, protonolysis, oxidative workup, and hydrolysis of the oxabicyclo[2.2.2]octyl ester protecting group gives dienic carboxylic acid 15 in a yield of 86% from 22. [Pg.458]

In 1986 Yamashida et al. found that the reaction of the (morpholino)phenyl-carbene complex 46 with symmetric alkynes 47 gave the morpholinylindene derivatives 48 and 49, as well as the indanones 50 derived from the latter by hydrolysis, in excellent yields (Scheme 9) [54]. This contrasts with the behavior of the corresponding (methoxy)phenylcarbene complex, which solely undergoes the Dotz reaction [55]. This transformation of the amino-substituted complex 46 apparently does not involve a CO insertion, which is an important feature of the Dotz benzannelation. [Pg.29]

The insertion of alkynes into a chromium-carbon double bond is not restricted to Fischer alkenylcarbene complexes. Numerous transformations of this kind have been performed with simple alkylcarbene complexes, from which unstable a,/J-unsaturated carbene complexes were formed in situ, and in turn underwent further reactions in several different ways. For example, reaction of the 1-me-thoxyethylidene complex 6a with the conjugated enyne-ketimines and -ketones 131 afforded pyrrole [92] and furan 134 derivatives [93], respectively. The alkyne-inserted intermediate 132 apparently undergoes 671-electrocyclization and reductive elimination to afford enol ether 133, which yields the cycloaddition product 134 via a subsequent hydrolysis (Scheme 28). This transformation also demonstrates that Fischer carbene complexes are highly selective in their reactivity toward alkynes in the presence of other multiple bonds (Table 6). [Pg.44]

We see from these examples that many of the carbon nucleophiles we encountered in Chapter 10 are also nucleophiles toward aldehydes and ketones (cf. Reactions 10-104-10-108 and 10-110). As we saw in Chapter 10, the initial products in many of these cases can be converted by relatively simple procedures (hydrolysis, reduction, decarboxylation, etc.) to various other products. In the reaction with terminal acetylenes, sodium acetylides are the most common reagents (when they are used, the reaction is often called the Nef reaction), but lithium, magnesium, and other metallic acetylides have also been used. A particularly convenient reagent is lithium acetylide-ethylenediamine complex, a stable, free-flowing powder that is commercially available. Alternatively, the substrate may be treated with the alkyne itself in the presence of a base, so that the acetylide is generated in situ. This procedure is called the Favorskii reaction, not to be confused with the Favorskii rearrangement (18-7). ... [Pg.1225]

Esters of a-diazoalkylphosphonic acids (95) show considerable thermal stability but react with acids, dienophiles, and triphenylphosphine to give the expected products. With olefinic compounds in the presence of copper they give cyclopropane derivatives (96), but with no such compounds present vinylphosphonic esters are formed by 1,2-hydrogen shift, or, when this route is not available, products such as (97) or (98) are formed, resulting from insertion of a carbenoid intermediate into C—C or C—H bonds. The related phosphonyl (and phosphoryl) azides (99) add to electron-rich alkynes to give 1,2,3-triazoles, from which the phosphoryl group is readily removed by hydrolysis. [Pg.116]

As shown in the two examples described here, formation of the benzene nucleus by trimerization of alkynes is usually catalyzed by a Co-complex. However, Und-heim and coworkers [276] have recently shown that a Ru "-complex can also be used. Reaction of the triyne 6/4-9, which was prepared from SchollkopPs bislactim ether 6/4-8 [277] with Grubbs I catalyst 6/3-13, led to 6/4-10 in an excellent yield of 90%. Hydrolysis of 6/4-10 gave the desired as-indacene-bridged bis(a-amino acid) derivative 6/4-11 (Scheme 6/4.3). [Pg.458]

The coordination of the alkyne to the rhodium catalyst allows the carborhodation of the triple bond to afford the vinylrhodium intermediate 47 (Scheme 14). The rearrangement of this organometallic compound into the 2-(alkenyl)phenylrhodium intermediate 48 is evidenced by one deuterium incorporation resulting from the deuter-iolysis of the Rh-C bond. The addition of the phenylrhodium intermediate 45 must occur before its hydrolysis with water. The 2-(alkenyl)phenylrhodium intermediate 45, generated by the phenylrhodation of an alkyne followed by... [Pg.305]

Since the hybridization and structure of the nitrile group resemble those of alkynes, titanium carbene complexes react with nitriles in a similar fashion. Titanocene-methylidene generated from titanacyclobutane or dimethyltitanocene reacts with two equivalents of a nitrile to form a 1,3-diazatitanacyclohexadiene 81. Hydrolysis of 81 affords p-ketoena-mines 82 or 4-amino-l-azadienes 83 (Scheme 14.35) [65,78]. The formation of the azati-tanacyclobutene by the reaction of methylidene/zinc halide complex with benzonitrile has also been studied [44]. [Pg.495]

Acid-catalyzed hydrolysis of S-allenylsulfinylamines 425, easily accessible from propargyl alcohols (cf. Scheme 7.8), provides the alkynes 427 (Scheme 7.56) [108, 109]. This transformation is postulated to proceed via the intermediate allenic sulfinic acid 426. However, in some cases with R1 = R2 = alkyl, more complicated products are formed instead of simple alkynes 427 [372]. [Pg.415]

Ozonolysis of alkynes followed by hydrolysis gives similar products to those obtained from permanganate oxidation. This reaction does not require oxidative or reductive work-up. Unsubstituted carbon atoms are oxidized to CO2, and mono-substituted carbon atoms to carboxylic acids. For example, ozonolysis of 1-butyene followed by hydrolysis gives propionic acid and carbon dioxide. [Pg.268]


See other pages where Hydrolysis from alkynes is mentioned: [Pg.590]    [Pg.590]    [Pg.4044]    [Pg.209]    [Pg.330]    [Pg.339]    [Pg.218]    [Pg.88]    [Pg.22]    [Pg.41]    [Pg.49]    [Pg.75]    [Pg.229]    [Pg.87]    [Pg.690]    [Pg.339]    [Pg.66]    [Pg.672]    [Pg.321]    [Pg.378]    [Pg.249]    [Pg.390]    [Pg.73]    [Pg.79]    [Pg.285]    [Pg.769]    [Pg.902]    [Pg.944]   
See also in sourсe #XX -- [ Pg.455 ]

See also in sourсe #XX -- [ Pg.455 ]




SEARCH



From alkynes

© 2024 chempedia.info