Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrogenation palladium/platinum catalyst

Laufer, W., Niederer, J. and Hoelderich, W. (2002). New Direct Hydroxylation of Benzene with Oxygen in the Presence of Hydrogen over Bifunctional Palladium/Platinum Catalysts, Adv. Synth. Catal., 344, pp. 1084—1089. [Pg.678]

The impurities usually found in raw hydrogen are CO2, CO, N2, H2O, CH, and higher hydrocarbons. Removal of these impurities by shift catalysis, H2S and CO2 removal, and the pressure-swing adsorption (PSA) process have been described (vide supra). Traces of oxygen in electrolytic hydrogen are usually removed on a palladium or platinum catalyst at room temperature. [Pg.428]

Reduction. Most ketones are readily reduced to the corresponding secondary alcohol by a variety of hydrogenation processes. The most commonly used catalysts are palladium, platinum, and nickel For example, 4-methyl-2-pentanol (methyl isobutyl carbinol) is commercially produced by the catalytic reduction of 4-methyl-2-pentanone (methyl isobutyl ketone) over nickel. [Pg.487]

Du Pont uses a Hquid-phase hydrogenation process that employs a palladium —platinum-on-carbon catalyst. The process uses a plug-flow reactor that achieves essentially quantitative yields, and the product exiting the reactor is virtually free of nitroben2ene. [Pg.231]

Hydrogenation Catalysts. The key to catalytic hydrogenation is the catalyst, which promotes a reaction which otherwise would occur too slowly to be useful. Catalysts for the hydrogenation of nitro compounds and nitriles are generally based on one or more of the group VIII metals. The metals most commonly used are cobalt, nickel, palladium, platinum, rhodium, and mthenium, but others, including copper (16), iron (17), and tellurium... [Pg.258]

Hydrogenation. Hydrogenation is one of the oldest and most widely used appHcations for supported catalysts, and much has been written in this field (55—57). Metals useflil in hydrogenation include cobalt, copper, nickel, palladium, platinum, rhenium, rhodium, mthenium, and silver, and there are numerous catalysts available for various specific appHcations. Most hydrogenation catalysts rely on extremely fine dispersions of the active metal on activated carbon, alumina, siHca-alumina, 2eoHtes, kieselguhr, or inert salts, such as barium sulfate. [Pg.199]

Nitropyridazines are reduced catalytically either over platinum, Raney nickel or palladium-charcoal catalyst. When an N-oxide function is present, palladium-charcoal in neutral solution is used in order to obtain the corresponding amino N-oxide. On the other hand, when hydrogenation is carried out in aqueous or alcoholic hydrochloric acid and palladium-charcoal or Raney nickel are used for the reduction of the nitro group, deoxygenation of the N- oxide takes place simultaneously. Halonitropyridazines and their N- oxides are reduced, dehalogenated and deoxygenated to aminopyridazines or to aminopyridazine N- oxides under analogous conditions. [Pg.34]

Reduction of isoindoles with dissolving metals or catalytically occurs in the pyrrole ring. Reduction of indolizine with hydrogen and a platinum catalyst gives an octahydro derivative. With a palladium catalyst in neutral solution, reduction occurs in the pyridine ring but in the presence of acid, reduction occurs in the five-membered ring (Scheme 38). Reductive metallation of 1,3-diphenylisobenzofuran results in stereoselective formation of the cw-1,3-dihydro derivative (Scheme 39) (80JOC3982). [Pg.61]

The above generalities apply particularly to palladium. Hydrogenation over platinum or rhodium are far less sensitive to the influence of steric crowding. Reduction of 1-t-butylnaphthalene over platinum, rhodium, and palladium resulted in values of /ci//c2 of 0.42, 0.71, and 0.024, respectively. Also, unlike mononuclear aromatics, palladium reduces substituted naphthalenes at substantially higher rates than does either platinum or rhodium. For example, the rate constants, k x 10 in mol sec" g catalyst", in acetic acid at 50 C and 1 atm, were (for 1,8-diisopropylnaphthalene) Pd (142), Pt(l8.4), and Rh(7.1)(25). [Pg.120]

Platinum and palladium are the most common catalysts for alkene hydrogenations. Palladium is normally used as a very fine powder supported" on an inert material such as charcoal (Pd/C) to maximize surface area. Platinum is normally used as PtC, a reagent called Adams catalyst after its discoverer, Roger Adams. [Pg.230]

Babcock et al. (Bl) examined the hydrogenation of a-methylstyrene catalyzed by palladium and platinum catalysts in a reactor of 1 -in. diameter under countercurrent flow. Flow rates were above 1500 kg/m2-hr for the liquid phase and above 15 kg/m2-hr for the gas, and it was concluded from the experimental results that mass transfer was not of rate-determining influence under these conditions. [Pg.104]


See other pages where Hydrogenation palladium/platinum catalyst is mentioned: [Pg.262]    [Pg.601]    [Pg.220]    [Pg.349]    [Pg.324]    [Pg.953]    [Pg.445]    [Pg.262]    [Pg.534]    [Pg.948]    [Pg.475]    [Pg.206]    [Pg.75]    [Pg.87]    [Pg.130]    [Pg.291]    [Pg.216]    [Pg.22]    [Pg.97]    [Pg.106]    [Pg.133]    [Pg.135]    [Pg.176]    [Pg.40]    [Pg.284]    [Pg.355]    [Pg.190]    [Pg.216]    [Pg.223]    [Pg.223]    [Pg.224]    [Pg.948]    [Pg.243]    [Pg.293]    [Pg.53]    [Pg.1636]    [Pg.90]    [Pg.76]    [Pg.186]    [Pg.499]   
See also in sourсe #XX -- [ Pg.63 ]




SEARCH



Hydrogen palladium

Hydrogen platinum

Hydrogen platinum catalyst

Palladium catalysts catalyst

Palladium hydrogenation

Palladium hydrogenation catalyst

Platinum hydrogenation

Platinum-palladium

Platinum-palladium catalysts

© 2024 chempedia.info