Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrogen catalysts, platinum

The impurities usually found in raw hydrogen are CO2, CO, N2, H2O, CH, and higher hydrocarbons. Removal of these impurities by shift catalysis, H2S and CO2 removal, and the pressure-swing adsorption (PSA) process have been described (vide supra). Traces of oxygen in electrolytic hydrogen are usually removed on a palladium or platinum catalyst at room temperature. [Pg.428]

The composition of a reforming catalyst is dictated by the composition of the feedstock and the desired reformate. The catalysts used are principally platinum or platinum—rhenium on an alumina base. The purpose of platinum on the catalyst is to promote dehydrogenation and hydrogenation reactions. Nonplatinum catalysts are used in regenerative processes for feedstocks containing sulfur, although pretreatment (hydrodesulfurization) may permit platinum catalysts to be employed. [Pg.207]

AH commercial processes for the manufacture of caprolactam ate based on either toluene or benzene, each of which occurs in refinery BTX-extract streams (see BTX processing). Alkylation of benzene with propylene yields cumene (qv), which is a source of phenol and acetone ca 10% of U.S. phenol is converted to caprolactam. Purified benzene can be hydrogenated over platinum catalyst to cyclohexane nearly aH of the latter is used in the manufacture of nylon-6 and nylon-6,6 chemical intermediates. A block diagram of the five main process routes to caprolactam from basic taw materials, eg, hydrogen (which is usuaHy prepared from natural gas) and sulfur, is given in Eigute 2. [Pg.428]

Hydroxylamine sulfate is produced by direct hydrogen reduction of nitric oxide over platinum catalyst in the presence of sulfuric acid. Only 0.9 kg ammonium sulfate is produced per kilogram of caprolactam, but at the expense of hydrogen consumption (11). A concentrated nitric oxide stream is obtained by catalytic oxidation of ammonia with oxygen. Steam is used as a diluent in order to avoid operating within the explosive limits for the system. The oxidation is followed by condensation of the steam. The net reaction is... [Pg.429]

Methylene chloride can also be made by reducing either chloroform or carbon tetrachloride with hydrogen over a platinum catalyst (20) or with metal hydrides (21). Chloroform is slowly reduced to methylene chloride upon warming with trisHane, Si Hg, in the absence of air as shown in equation 3. [Pg.519]

Two synthesis processes account for most of the hydrogen cyanide produced. The dominant commercial process for direct production of hydrogen cyanide is based on classic technology (23—32) involving the reaction of ammonia, methane (natural gas), and air over a platinum catalyst it is called the Andmssow process. The second process involves the reaction of ammonia and methane and is called the BlausAure-Methan-Ammoniak (BMA) process (30,33—35) it was developed by Degussa in Germany. Hydrogen cyanide is also obtained as a by-product in the manufacture of acrylonitrile (qv) by the ammoxidation of propjiene (Sohio process). [Pg.377]

A typical converter is made up of multiple furnaces, each of which contains 8 to 10 reactors. Each reactor is made up of 10 to 30 sintered alumina tubes lined with platinum. The furnaces are direct fired with natural gas to 1200—1300°C. A typical furnace can produce about 125 t per month of hydrogen cyanide. Catalyst life is approximately 10,000 h. [Pg.379]

Reduction of isoindoles with dissolving metals or catalytically occurs in the pyrrole ring. Reduction of indolizine with hydrogen and a platinum catalyst gives an octahydro derivative. With a palladium catalyst in neutral solution, reduction occurs in the pyridine ring but in the presence of acid, reduction occurs in the five-membered ring (Scheme 38). Reductive metallation of 1,3-diphenylisobenzofuran results in stereoselective formation of the cw-1,3-dihydro derivative (Scheme 39) (80JOC3982). [Pg.61]

Heptyl alcohol has been prepared by the reduction of heptaldehyde with zinc dust and acetic acid,i with sodium amalgam and acetic acid, with sodium in toluene and acetic acid, and with hydrogen and a platinum catalyst. Heptaldehyde has also been reduced biochemically by adding it to a fermenting sugar solution. Heptyl alcohol has been prepared by the reduction of heptoamide with sodium and amyl alcohol. ... [Pg.53]

This method of preparation is suitable for producing primary alkyl lactates but is unsatisfactory for /3-methallyl lactate because the strong mineral acid catalyzes the rearrangement of methallyl alcohol to isobutyraldehyde. Methyl lactate can be made conveniently (80-85% yield) by heating 1 mole of lactic acid condensation polymer with 2.5-5 moles of methanol and a small quantity of sulfuric acid at 100 for 1-4 hours in a heavy-walled bottle, such as is used for catalytic hydrogenation with a platinum catalyst. [Pg.6]

Johnson and Whitehead have further shown that the reductive elimination of the pyrrolidine group from the pyrrolidine enamine of 2,4-dimethyl-cyclohexanone (16), which involved treating it with a mixture of lithium aluminum hydride and aluminum chloride (9), gave the trans isomer of 3,5-dimethyl-/l -cyclohexene (17) which on subsequent hydrogenation on a platinum catalyst led to the // onr-3,5-dimethylcyclohexane (18). [Pg.4]

Quantitative studies of the effect of pyridine on the rate of hydrogenation of imns-crotonic acid in the presence of a platinum catalyst have been carried out by Maxted and Walker who concluded that... [Pg.191]

Another group of reactions with the predominant cleavage of the ring comprises catalytic hydrogenation of isoxazole derivatives and has been investigated only recently. The most commonly used catalyst has been Raney nickel,but use has sometimes been made of platinum catalysts. Hydrogenolysis of the 0—N bond (172—>173) occurs in isoxazole, its homologs,and their functional derivatives, for example, isoxazole carboxylic acids- and 5-aminoisoxazoles. ... [Pg.415]

Dicyclopentadiene can be hydrogenated conveniently over a platinum catalyst in a Parr apparatus. The tetrahydro product is used in the synthesis of adamantane (Chapter 15, Section I). [Pg.39]

The 0 -phenyl-0 -piperidyl-(2)-acetic acid methylester of BP 135° to 137°C under 0.6 mm pressure is obtained in theoretical yield by hydrogenation of 50 g of 0 -phenyl-0 -pyridyl-(2)-acetic acid methylester in glacial acetic acid in the presence of 1 g of platinum catalyst at room temperature, while taking up 6 hydrogen atoms. Reaction with HCI gives the hydrochloride. Resolution of stereoisomers is described in U.S. Patent 2,957,880. [Pg.998]

Despite the limited solubility of 1-octene in the ionic catalyst phase, a remarkable activity of the platinum catalyst was achieved [turnover frequency (TOP) = 126 h ]. However, the system has to be carefully optimized to avoid significant formation of hydrogenated by-product. Detailed studies to identify the best reaction conditions revealed that, in the chlorostannate ionic liquid [BMIM]Cl/SnCl2 [X(SnCl2) = 0.55],... [Pg.234]

The catalysts generally used in catalytic reforming are dual functional to provide two types of catalytic sites, hydrogenation-dehydrogenation sites and acid sites. The former sites are provided by platinum, which is the best known hydrogenation-dehydrogenation catalyst and the latter (acid sites) promote carbonium ion formation and are provided by an alumina carrier. The two types of sites are necessary for aromatization and isomerization reactions. [Pg.62]


See other pages where Hydrogen catalysts, platinum is mentioned: [Pg.288]    [Pg.224]    [Pg.288]    [Pg.224]    [Pg.98]    [Pg.628]    [Pg.870]    [Pg.889]    [Pg.948]    [Pg.503]    [Pg.125]    [Pg.163]    [Pg.39]    [Pg.182]    [Pg.195]    [Pg.222]    [Pg.176]    [Pg.75]    [Pg.87]    [Pg.130]    [Pg.742]    [Pg.218]    [Pg.114]    [Pg.291]    [Pg.134]    [Pg.375]    [Pg.158]    [Pg.121]    [Pg.39]    [Pg.106]    [Pg.176]    [Pg.1303]    [Pg.680]   
See also in sourсe #XX -- [ Pg.290 , Pg.291 ]




SEARCH



Hydrogen platinum

Hydrogenation over platinum catalyst

Hydrogenation palladium/platinum catalyst

Platinum Catalyst Poisoning by Traces of Co in the Hydrogen

Platinum black, hydrogenation catalyst

Platinum catalyst hydrogen overvoltage

Platinum catalyst hydrogen-oxygen reaction

Platinum catalyst, hydrogen adsorptivity

Platinum catalysts supported, hydrogen chemisorption

Platinum colloidal, hydrogenation catalyst

Platinum dioxide, hydrogenation catalyst

Platinum hydrogenation

Platinum oxide hydrogenation catalyst

Platinum sponge, hydrogenation catalyst

Platinum-rhenium catalysts hydrogen

Platinum: hydrogenation catalyst

© 2024 chempedia.info