Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrogenation Palladium on Carbon

The cycloaddition of diethyl diazenedicarboxylate and l-(l-cyclohexenyl)cyclohexene has been achieved in good yield. The adduct 1 resisted hydrogenation (hydrogen, palladium on carbon or Raney nickel, 414 kbars) and reconverted to the starting diene on hydrolysis and oxidation... [Pg.994]

TRANSFER HYDROGENATION Palladium on carbon. TRANSTHIOACETALIZATION Glyoxylic acid. [Pg.224]

Trichloroacetic acid K = 0.2159) is as strong an acid as hydrochloric acid. Esters and amides are readily formed. Trichloroacetic acid undergoes decarboxylation when heated with caustic or amines to yield chloroform. The decomposition of trichloroacetic acid in acetone with a variety of aUphatic and aromatic amines has been studied (37). As with dichloroacetic acid, trichloroacetic acid can be converted to chloroacetic acid by the action of hydrogen and palladium on carbon (17). [Pg.89]

Dry reduced nickel catalyst protected by fat is the most common catalyst for the hydrogenation of fatty acids. The composition of this type of catalyst is about 25% nickel, 25% inert carrier, and 50% soHd fat. Manufacturers of this catalyst include Calsicat (Mallinckrodt), Harshaw (Engelhard), United Catalysts (Sud Chemie), and Unichema. Other catalysts that stiH have some place in fatty acid hydrogenation are so-called wet reduced nickel catalysts (formate catalysts), Raney nickel catalysts, and precious metal catalysts, primarily palladium on carbon. The spent nickel catalysts are usually sent to a broker who seUs them for recovery of nickel value. Spent palladium catalysts are usually returned to the catalyst suppHer for credit of palladium value. [Pg.91]

The catalyst is previously prepared in an apparatus for catalytic hydrogenation, in which are placed 0.5 g. of palladous chloride, 3.0 g. of Norite, and 20 ml. of distilled water. The bottle is swept out with hydrogen and then shaken with hydrogen for 2-3 hours at 2-3 atmospheres (40 lb.) pressure. The palladium on carbon is collected on a Biichner funnel, washed with five 50-ml. portions of distilled water, then with five 50-ml. portions of 95% ethanol, and finally twice with ether. Upon drying, about 3 g. of the catalyst is obtained. It is stored in a vacuum desiccator over solid sodium hydroxide. If the reduction of the chloro-lepidine does not proceed normally, the used catalyst should be removed by suction filtration and a fresh 3-g. portion of catalyst added. Failure of the reduction step is usually due to an inactive catalyst or to impurities in the acetic acid or chlorolepidine. The palladium catalysts, prepared as described elsewhere in this volume, are presumably also satisfactory for the reduction of 2-chlorolepidine (p. 77). [Pg.46]

In general, the hydrogenolysis product is also favored by an acidic medium, as illustrated in the hydrogenation over 5° palladium-on-carbon of acetophenone to the hydrogenation product phenylethanol and to the hydrogenolysis product ethylbenzene, with various additives present (S3). [Pg.10]

Choice of catalyst and solvent allowed considerable flexibility in hydrogenation of 8. With calcium carbonate in ethanol-pyridine, the sole product was the trans isomer 9, but with barium sulfate in pure pyridine the reaction came to a virtual halt after absorption of 2 equiv of hydrogen and traws-2-[6-cyanohex-2(Z)-enyl]-3-(methoxycarbonyl)cyclopentanone (7) was obtained in 90% yield together with 10% of the dihydro compound. When palladium-on-carbon was used in ethyl acetate, a 1 1 mixture of cis and trans 9 was obtained on exhaustive hydrogenation (S6). It is noteworthy that in preparation of 7 debenzylation took precedence over double-bond saturation. [Pg.58]

Hydrogenation of 2,5-diacetoxy-2,5-dimethyl-3-hexyne 10 over 0% palladium-on-carbon is exceptionally complex. Seven different products are formed together with acetic acid. All are hydrogenolysis products arising from the initially formed 2,5-diacetoxy-2,5-dimethyl-3-hexene 11. One of these, 2,5-dimethyl-2-acetoxy-4-hexene 12 forms in as much as 4S yield. [Pg.59]

Reductive alkylation by alcohol solvents may occur as an unwanted side reaction 22,39), and it is to avoid this reaction that Freifelder (20) recom mends ruthenium instead of nickel in pyridine hydrogenation. Alkylation by alcohols may occur with surprising ease 67). Reduction of 18 in ethanol over 10% palladium-on carbon to an amino acid, followed bycyclization with /V,/V-dicyclohexylcarbodiimide gave a mixture of 19 and 20 wiih the major product being the /V-ethyl derivative 49,50). By carrying out the reduction in acetic acid, 20 was obtained as the sole cyclized product 40). [Pg.90]

In a synthesis of minocycline, interesting use was made of a reductive alkylation of a nitro function, accompanied by loss of a diazonium group. The sequence provides a clever way of utilizing the unwanted 9-nitro isomer that arises from nitration of 6-demethyl-6-deoxytetracycline (//). When di-azotization was complete, urea and 40% aqueous formaldehyde were added, and the entire solution was mixed with 10% palladium-on-carbon and reduced under hydrogen. No further use of this combined reaction seems to have been made. [Pg.90]

Palladium proved especially useful in the hydrogenation of 2-hydroxy-3-nitropropanoic acid. Reduction over palladium-on-carbon gave pure, powdery isoserine, whereas platinum failed to reduce the nitro function under neutral or acidic conditions reduction over Raney nickel gave a bright green powder (96). [Pg.105]

Two hydrogen-transfer systems have been developed that also give good yields of hydroxylamines. One uses 5% palladium-on-carbon in aqueous tetrahydrofuran with phosphinic acid or its sodium salt as hydrogen donor the other uses 5% rhodium-on-carbon in aqueous tetrahydrofuran and hydrazine as donor. These systems are complementary and which is the better may depend on the substrate (36). The reductions cannot be followed by pressure drop, and both require analysis of the product to determine when the reduction should be terminated. [Pg.107]

Formation of diamines from dinitro compounds, which are unable to interact intramolecularly, presents no problem. Very large volumes of diaminotoluene, a precursor to toluene diisocyanate, are produced by hydrogenation of dinitrotoluene over either nickel or palladium-on-carbon. Selective hydrogenation of one or the other of two nitro groups is much more of a challenge, but a number of outstanding successes have been recorded. A case in point is the hydrogenation of 2,4-dinitroaniline (11) to 4-nitro-l,2-benzenediamine (12) (2) or to 2-nitro-l,4-benzenediamine (10). [Pg.111]

Because of the industrial magnitude of these processes, many catalysts have been examined with variations in metal distribution, pore size, and alkalinity. In most synthetic work where catalyst life and small variations in yield are not of great importance, most palladium-on-carbon or -on-alumina powder catalysts will be found satisfactory for conversion of phenols to cyclohexanones. Palladium has a relatively low tendency to reduce aliphatic ketones, and a sharp decrease in the rate of absorption occurs at about 2 mol of consumed hydrogen. Nickel may also be used but overhydrogenation is more apt to occur. [Pg.127]

Extreme differences between 5% palladium-on-carbon and platinum oxide were found on reduction of the 5-aryl substituted oxazole 14. Over palladium, 15 was formed in quantitative yield by hydrogenolysis of the benzyl hydroxyl, whereas over Pt, scission of the oxazole occurred to give 13 quantitatively (48). Hydrogenation of 15 over platinum oxide gave the phenethylamide 16. [Pg.143]

In contrast to aromatic halonitro compounds, selective removal of halogen in aliphatic halonitro compounds presents little problem. The reaction can be done by hydrogenation over palladium-on-carbon in the presence of a hydrohalide acceptor 46,73). [Pg.153]

N-Nilrosoamines are reduced easily lo ihe hydrazine and, if continued, lo the amine (62). Early workers ruled out cleavage of dimeihylhydrazine as the source of dimethylamine in hydrogenation of N-nitrosodimethylamine since liule ammonia was found the letramethylietrazene was implicated in the hydrogenolysis (fSI). Palladium-on-carbon under mild conditions is used for industrial production of dialkyl hydrazines from N-nitrosoamines. [Pg.173]

Preparation of 7-amino-3-chloro-3-cephem-4-carboxylic acid To a solution of 750 mg (1 55 mmol) of p-nitrobenzyl 7-amino-3-chloro-3-cephem-4-carboxylate hydrochloride in 20 ml of tetrahydrofuran and 40 ml of methanol was added a suspension of 750 mg of prereduced 5% palladium on carbon catalyst in 20 ml of ethanol and the suspension was hydrogenated under 50 psi of hydrogen at room temperature for 45 minutes. The catalyst was filtered and washed with THF and water. The filtrate and catalyst washes were combined and evaporated to dryness. The residue was dissolved in a water-ethyl acetate mixture and the pH adjusted to pH 3. The insoluble product was filtered and triturated with acetone. The product was then dried to yield 115 mg of 7-amlno-3-chloro-3-cephem-4-carboxylic acid. [Pg.259]

Of this material 1.0 g is dissolved in 150 ml of warm 95% ethyl alcohol. To the solution is added 1.0 g of 5% palladium on carbon catalyst, and the mixture is hydrogenated at room temperature and atmospheric pressure by bubbling hydrogen into it for 3 hours with stirring. The hydrogenation product is filtered. The solid phase, comprising the catalyst and the desired product, is suspended in ethyl acetate and water and adjusted to pH 2 with hydrochloric acid. The suspension is filtered to remove the catalyst. The aqueous phase is separated from the filtrate, and is evaporated under vacuum to recover the desired product, 7-(D-a-aminophenylacetamido)cephalosporanic acid. [Pg.283]

To the reduction mixture was then added 3.5 g of 5% palladium on carbon catalyst and the mixture was hydrogenated under a hydrogen pressure of 50 psi at room temperature for 12 hours. The catalyst was removed by filtration and the filtrate was evaporated to a small volume. The concentrated filtrate was dissolved in diethyl ether and the ethereal solution was saturated with anhydrous hydrogen chloride. The reduction product, 3,4-dimethoxy-N-[3-4-methoxyphenyl)-1 -methyl-n-propy 11 phenethylamine was precipitated as the hydrochloride salt. The salt was filtered and recrystallized from ethanol melting at about 147°C to 149°C. [Pg.533]


See other pages where Hydrogenation Palladium on Carbon is mentioned: [Pg.254]    [Pg.559]    [Pg.27]    [Pg.88]    [Pg.88]    [Pg.248]    [Pg.254]    [Pg.559]    [Pg.27]    [Pg.88]    [Pg.88]    [Pg.248]    [Pg.277]    [Pg.81]    [Pg.425]    [Pg.32]    [Pg.45]    [Pg.315]    [Pg.318]    [Pg.271]    [Pg.130]    [Pg.239]    [Pg.333]    [Pg.22]    [Pg.41]    [Pg.43]    [Pg.44]    [Pg.106]    [Pg.149]    [Pg.149]    [Pg.163]    [Pg.164]    [Pg.37]    [Pg.246]    [Pg.300]    [Pg.615]    [Pg.1030]   
See also in sourсe #XX -- [ Pg.205 ]




SEARCH



Hydrogen on Carbon

Hydrogen palladium

Hydrogen, on palladium

Hydrogenation palladium/carbon

On palladium

Palladium carbonates

Palladium hydrogenation

© 2024 chempedia.info