Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrogen unit cell

Equilibrium hydrogen concentration m(P, T) was determined from the lattice constant a(P,T) of hydrogen unit cell at minimum value of the Gibbs thermodynamical potential G P. T) = F(P, T) + PV ... [Pg.130]

The crystal stmcture of PPT is pseudo-orthorhombic (essentially monoclinic) with a = 0.785/nm b = 0.515/nm c (fiber axis) = 1.28/nm and d = 90°. The molecules are arranged in parallel hydrogen-bonded sheets. There are two chains in a unit cell and the theoretical crystal density is 1.48 g/cm. The observed fiber density is 1.45 g/cm. An interesting property of the dry jet-wet spun fibers is the lateral crystalline order. Based on electron microscopy studies of peeled sections of Kevlar-49, the supramolecular stmcture consists of radially oriented crystaUites. The fiber contains a pleated stmcture along the fiber axis, with a periodicity of 500—600 nm. [Pg.66]

Sohd hydrogen usually exists in the hexagonal close-packed form. The unit cell dimensions are = 378 pm and Cg = 616 pm. SoHd deuterium also exists in the hexagonal close-packed configuration, and = 354 pm, Cg = 591 pm (57—59). [Pg.414]

Crystals of uranyl perchlorate, U02(C10[13093-00-0] have been obtained with six and seven hydration water molecules. The uranyl ion is coordinated with five water molecules (4) in the equatorial plane with a U—O(aquo) distance of 245 nm (2.45 E). The perchlorate anion does not complex the uranyl center. The unit cells contain two [0104] and one or two molecules of hydration water held together by hydrogen bonding (164). [Pg.326]

The long-chain alkanoic acids and their derivatives are polymorphic with the unit cell containing dimers formed by hydrogen bonding between carboxyl groups. [Pg.83]

Similar models for the crystal stmcture of Fortisan Cellulose II came from two separate studies despite quite different measured values of the diffraction intensities (66,70). Both studies concluded that the two chains in the unit cell were packed antiparallel. Hydrogen bonding between chains at the corners and the centers of the unit cells, not found in Cellulose I, was proposed to account for the increased stabiUty of Cellulose II. The same model, with... [Pg.241]

In the face-centred cubic structure tirere are four atoms per unit cell, 8x1/8 cube corners and 6x1/2 face centres. There are also four octahedral holes, one body centre and 12 x 1 /4 on each cube edge. When all of the holes are filled the overall composition is thus 1 1, metal to interstitial. In the same metal structure there are eight cube corners where tetrahedral sites occur at the 1/4, 1/4, 1/4 positions. When these are all filled there is a 1 2 metal to interstititial ratio. The transition metals can therefore form monocarbides, niU ides and oxides with the octahedrally coordinated interstitial atoms, and dihydrides with the tetrahedral coordination of the hydrogen atoms. [Pg.182]

On the other hand, in the single crystals prepared from equivalent amounts of heterochiral 1 1 complexes, a pair of two heterochiral 1 1 complexes are incorporated in a unit cell to form a layered structure with alternate layer distances of 7.33 and 7.6 A. Two perchlorate ions stay in the narrower gap, and two additional acetone molecules as crystallization solvent occupy the wider gap. The perchlorate ions interact with two axial water ligands by hydrogen bonds (3.71 and 3.77 A) to construct a layered structure. The adjacent two molecules of heterochiral 1 1 com-... [Pg.265]

Beta radiation Electron emission from unstable nuclei, 26,30,528 Binary molecular compound, 41-42,190 Binding energy Energy equivalent of the mass defect measure of nuclear stability, 522,523 Bismuth (m) sulfide, 540 Blassie, Michael, 629 Blind staggers, 574 Blister copper, 539 Blood alcohol concentrations, 43t Body-centered cubic cell (BCC) A cubic unit cell with an atom at each comer and one at the center, 246 Bohrmodd Model of the hydrogen atom... [Pg.683]

In the United States so many vehicles operate on hydrogen fuel cells (sec Box 12.1) that hydrogen refueling stations have opened in many cities, including Washington, DC. [Pg.705]

Fig. 3.—Parallel packing arrangement of the 2-fold helices of cellulose I (1). (a) Stereo view of two unit cells approximately normal to the ac-plane. The two comer chains (open bonds) in the back, separated by a, form a hydrogen-bonded sheet. The center chain is drawn in filled bonds. All hydrogen bonds are drawn in dashed lines in this and the remaining diagrams, (b) Projection of the unit cell along the c-axis, with a down and b across the page. No hydrogen bonds are present between the comer and center chains. Fig. 3.—Parallel packing arrangement of the 2-fold helices of cellulose I (1). (a) Stereo view of two unit cells approximately normal to the ac-plane. The two comer chains (open bonds) in the back, separated by a, form a hydrogen-bonded sheet. The center chain is drawn in filled bonds. All hydrogen bonds are drawn in dashed lines in this and the remaining diagrams, (b) Projection of the unit cell along the c-axis, with a down and b across the page. No hydrogen bonds are present between the comer and center chains.
Fig. 8.—Packing arrangement of four symmetry-related 2-fold helices of mannan II (6). (a) Stereo view of two unit cells approximately normal to flic frc-plane. The two chains in the back (open bonds) and the two in the front (filled bonds) are linked successively by 6-0H-- 0-6 bonds. The front and back chains, both at left and right, are further connected by 0-2 -1V -0-2 bridges, (h) Projection of the unit cell along the c-axis the a-axis is down the page. This highlights the two sets of interchain hydrogen bonds between antiparallel chains, distinguished by filled and open bonds. The crossed circles are water molecules at special positions. Fig. 8.—Packing arrangement of four symmetry-related 2-fold helices of mannan II (6). (a) Stereo view of two unit cells approximately normal to flic frc-plane. The two chains in the back (open bonds) and the two in the front (filled bonds) are linked successively by 6-0H-- 0-6 bonds. The front and back chains, both at left and right, are further connected by 0-2 -1V -0-2 bridges, (h) Projection of the unit cell along the c-axis the a-axis is down the page. This highlights the two sets of interchain hydrogen bonds between antiparallel chains, distinguished by filled and open bonds. The crossed circles are water molecules at special positions.

See other pages where Hydrogen unit cell is mentioned: [Pg.353]    [Pg.213]    [Pg.68]    [Pg.220]    [Pg.77]    [Pg.313]    [Pg.159]    [Pg.40]    [Pg.66]    [Pg.982]    [Pg.234]    [Pg.190]    [Pg.265]    [Pg.658]    [Pg.89]    [Pg.228]    [Pg.109]    [Pg.251]    [Pg.161]    [Pg.140]    [Pg.1012]    [Pg.429]    [Pg.429]    [Pg.438]    [Pg.439]    [Pg.326]    [Pg.330]    [Pg.330]    [Pg.331]    [Pg.333]    [Pg.333]    [Pg.334]    [Pg.335]    [Pg.337]    [Pg.338]   
See also in sourсe #XX -- [ Pg.617 ]




SEARCH



Hydrogen bonding unit cell

Hydrogen form unit cell composition

© 2024 chempedia.info