Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrogen peroxide radical cation

Heavily pigmented wools such as karakul require a more stringent approach, known as mordant bleaching, in which a metal salt is first appHed. The metal cations ate preferentially absorbed by the melanin pigment, where they subsequendy decompose hydrogen peroxide to produce highly aggressive hydroxyl free radicals, which then attack and bleach the melanin (114). [Pg.349]

A rapid and clean oxidation of sulphides to sulphoxides can also be carried out using the titanium(III) trichloride/hydrogen peroxide reagent35. On a milimole scale, the oxidation takes place in a time shorter than 20 min upon addition of a solution of hydrogen peroxide to a solution of the sulphide and titanium(III) trichloride in methanol at room temperature. It was suggested that the formation of a sulphoxide in this reaction resulted from a direct coupling of the hydroxy radical with cation radical 20 formed at the sulphur atom of the sulphide (equation 6). [Pg.240]

Oxidation of thiophene with Fenton-like reagents produces 2-hydroxythiophene of which the 2(570 One isomer is the most stable (Eq. 1) <96JCR(S)242>. In contrast, methyltrioxorhenium (Vn) catalyzed hydrogen peroxide oxidation of thiophene and its derivatives forms first the sulfoxide and ultimately the sulfone derivatives <96107211>. Anodic oxidation of aminated dibenzothiophene produces stable radical cation salts <96BSF597>. Reduction of dihalothiophene at carbon cathodes produces the first example of an electrochemical halogen dance reaction (Eq. 2) <96JOC8074>. [Pg.78]

Extracellular peroxidases are produced by Streptomyces chromofuscus, with the capability to decolorize azo dyes associated to ligninolytic activity in aerobiosis. Azo dyes are converted to cationic radicals, which are subjected to nucleophilic attack by water or hydrogen peroxide molecules, producing reactive compounds that undergo redox reactions that result in a more stable intermediate [37]. [Pg.201]

Other cationic surfactants such as TTAB, DTAB, DODAB, STAC, CEDAB, and DDDAB have been used in CL reactions with less frequency. Thus, tetradecyltrimethylammonium bromide [TTAB] has been used to increase the sensitivity of the method to determine Fe(II) and total Fe based on the catalytic action of Fe(II) in the oxidation of luminol with hydrogen peroxide in an alkaline medium [47], While other surfactants such as HTAB, hexadecylpiridinium bromide (HPB), Brij-35, and SDS do not enhance the CL intensity, TTAB shows a maximum enhancement at a concentration of 2.7 X 10 2 M (Fig. 11). At the same time it was found that the catalytic effect of Fe(II) is extremely efficient in the presence of citric acid. With regard to the mechanism of the reaction, it is thought that Fe(II) forms an anionic complex with citric acid, being later concentrated on the surface of the TTAB cationic micelle. The complex reacts with the hydrogen peroxide to form hydroxy radical or superoxide ion on the... [Pg.302]

Various hydroxyl and amino derivatives of aromatic compounds are oxidized by peroxidases in the presence of hydrogen peroxide, yielding neutral or cation free radicals. Thus the phenacetin metabolites p-phenetidine (4-ethoxyaniline) and acetaminophen (TV-acetyl-p-aminophenol) were oxidized by LPO or HRP into the 4-ethoxyaniline cation radical and neutral V-acetyl-4-aminophenoxyl radical, respectively [198,199]. In both cases free radicals were detected by using fast-flow ESR spectroscopy. Catechols, Dopa methyl ester (dihydrox-yphenylalanine methyl ester), and 6-hydroxy-Dopa (trihydroxyphenylalanine) were oxidized by LPO mainly to o-semiquinone free radicals [200]. Another catechol derivative adrenaline (epinephrine) was oxidized into adrenochrome in the reaction catalyzed by HRP [201], This reaction can proceed in the absence of hydrogen peroxide and accompanied by oxygen consumption. It was proposed that the oxidation of adrenaline was mediated by superoxide. HRP and LPO catalyzed the oxidation of Trolox C (an analog of a-tocopherol) into phenoxyl radical [202]. The formation of phenoxyl radicals was monitored by ESR spectroscopy, and the rate constants for the reaction of Compounds II with Trolox C were determined (Table 22.1). [Pg.736]

One of numerous examples of LOX-catalyzed cooxidation reactions is the oxidation and demethylation of amino derivatives of aromatic compounds. Oxidation of such compounds as 4-aminobiphenyl, a component of tobacco smoke, phenothiazine tranquillizers, and others is supposed to be the origin of their damaging effects including reproductive toxicity. Thus, LOX-catalyzed cooxidation of phenothiazine derivatives with hydrogen peroxide resulted in the formation of cation radicals [40]. Soybean LOX and human term placenta LOX catalyzed the free radical-mediated cooxidation of 4-aminobiphenyl to toxic intermediates [41]. It has been suggested that demethylation of aminopyrine by soybean LOX is mediated by the cation radicals and neutral radicals [42]. Similarly, soybean and human term placenta LOXs catalyzed N-demethylation of phenothiazines [43] and derivatives of A,A-dimethylaniline [44] and the formation of glutathione conjugate from ethacrynic acid and p-aminophenol [45,46],... [Pg.810]

This behavior, as well as complementary observations, can be explained on the basis of the reaction mechanism depicted in Scheme 5.3. The main catalytic cycle involves three successive forms of the enzyme in which the iron porphyrin prosthetic group undergoes changes in the iron oxidation state and the coordination sphere. E is a simple iron(III) complex. Upon reaction with hydrogen peroxide, it is converted into a cation radical oxo complex in which iron has a formal oxidation number of 5. This is then reduced by the reduced form of the cosubstrate, here an osmium(II) complex, to give an oxo complex in which iron has a formal oxidation number of 4. [Pg.312]

However, in certain cases, the rate of electron uptake by a particular species just happens to be slow. For example, electron transfer between the methyl viologen radical cation (MV ) and hydrogen peroxide has a rate constant of 2.0 (mol dm ) s , while the reaction between MV and just about any other chemical oxidant known is so fast as to be dijfusion-controlled. The reason for this is simply not known at the present time. [Pg.224]


See other pages where Hydrogen peroxide radical cation is mentioned: [Pg.121]    [Pg.121]    [Pg.318]    [Pg.44]    [Pg.172]    [Pg.12]    [Pg.272]    [Pg.67]    [Pg.70]    [Pg.218]    [Pg.95]    [Pg.304]    [Pg.584]    [Pg.734]    [Pg.893]    [Pg.55]    [Pg.73]    [Pg.220]    [Pg.128]    [Pg.289]    [Pg.364]    [Pg.51]    [Pg.68]    [Pg.68]    [Pg.433]    [Pg.21]    [Pg.23]    [Pg.52]    [Pg.71]    [Pg.122]    [Pg.132]    [Pg.448]    [Pg.357]    [Pg.68]    [Pg.97]    [Pg.357]    [Pg.104]    [Pg.68]    [Pg.97]   
See also in sourсe #XX -- [ Pg.121 ]




SEARCH



Hydrogen cations

Radical, hydrogen peroxide

Radical, peroxides

© 2024 chempedia.info