Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrogen ions processes

Small amounts of propionitrile and bis(cyanoethyl) ether are formed as by-products. The hydrogen ions are formed from water at the anode and pass to the cathode through a membrane. The catholyte that is continuously recirculated in the cell consists of a mixture of acrylonitrile, water, and a tetraalkylammonium salt the anolyte is recirculated aqueous sulfuric acid. A quantity of catholyte is continuously removed for recovery of adiponitrile and unreacted acrylonitrile the latter is fed back to the catholyte with fresh acrylonitrile. Oxygen that is produced at the anodes is vented and water is added to the circulating anolyte to replace the water that is lost through electrolysis. The operating temperature of the cell is ca 50—60°C. Current densities are 0.25-1.5 A/cm (see Electrochemical processing). [Pg.221]

Fluorine is produced by the electrolysis of anhydrous potassium biduoride [7789-29-9] KHF2 or KF HF, which contains various concentrations of free HF. The duoride ion is oxidized at the anode to Hberate duorine gas, and the hydrogen ion is reduced at the cathode to Hberate hydrogen. Anhydrous HF caimot be used alone because of its low electrical conductivity (see Electrochemical processing, inorganic). [Pg.125]

Miscellaneous. Hydrochloric acid is used for the recovery of semiprecious metals from used catalysts, as a catalyst in synthesis, for catalyst regeneration (see Catalysts, regeneration), and for pH control (see Hydrogen-ION activity), regeneration of ion-exchange (qv) resins used in wastewater treatment, electric utiUties, and for neutralization of alkaline products or waste materials. In addition, hydrochloric acid is also utilized in many production processes for organic and inorganic chemicals. [Pg.451]

First Carbonation. The process stream OH is raised to 3.0 with carbon dioxide. Juice is recycled either internally or in a separate vessel to provide seed for calcium carbonate growth. Retention time is 15—20 min at 80—85°C. OH of the juice purification process streams is more descriptive than pH for two reasons first, all of the important solution chemistry depends on reactions of the hydroxyl ion rather than of the hydrogen ion and second, the nature of the C0 2 U20-Ca " equiUbria results in a OH which is independent of the temperature of the solution. AH of the temperature effects on the dissociation constant of water are reflected by the pH. [Pg.26]

Both iron and aluminum are particulady troublesome because of their abiUty to act as coagulants. Also, their soluble and insoluble hydroxide forms can each cause precipitation of some water treatment chemicals, such as orthophosphate. Airborne contaminants usually consist of clay and dirt particles but can include gases such as hydrogen sulfide, which forms insoluble precipitates with many metal ions. Process leaks introduce a variety of contaminants that accelerate deposition and corrosion. [Pg.271]

DispEcement. In many of the appHcations of chelating agents, the overall effect appears to be a displacement reaction, although the mechanism probably comprises dissociations and recombinations. The basis for many analytical titrations is the displacement of hydrogen ions by a metal, and the displacement of metal by hydrogen ions or other metal ions is a step in metal recovery processes. Some analytical pM indicators function by changing color as one chelant is displaced from its metal by another. [Pg.393]

The pH effect in chelation is utilized to Hberate metals from thein chelates that have participated in another stage of a process, so that the metal or chelant or both can be separately recovered. Hydrogen ion at low pH displaces copper, eg, which is recovered from the acid bath by electrolysis while the hydrogen form of the chelant is recycled (43). Precipitation of the displaced metal by anions such as oxalate as the pH is lowered (Fig. 4) is utilized in separations of rare earths. Metals can also be displaced as insoluble salts or hydroxides in high pH domains where the pM that can be maintained by the chelate is less than that allowed by the insoluble species (Fig. 3). [Pg.393]

Specific-Ion Electrodes In addition to the pH glass electrode specific for hydrogen ions, a number of electrodes that are selective for the measurement of other ions have been developed. This selectivity is obtained through the composition of the electrode membrane (glass, polymer, or liquid-liquid) and the composition of the elec trode. Tbese electrodes are subject to interference from other ions, and the response is a function of the total ionic strength of the solution. However, electrodes have been designed to be highly selective for specific ions, and when properly used, these provide valuable process measurements. [Pg.765]

Dijfusion Dialy The propensity of and OH" to penetrate membranes is useful in diffusion dialysis. An anion-exchange membrane will block the passage of metal cations while passing hydrogen ions. This process uses special ion-exchange membranes, but does not employ an applied electric current. [Pg.2033]

The corrosion rate is controlled mainly hy cathodic reaction rates. Cathodic Reactions 5.2 and 5.3 are usually much slower than anodic Reaction 5.1. The slower reaction controls the corrosion rate. If water pH is depressed. Reaction 5.3 is favored, speeding attack. If oxygen concentration is high. Reaction 5.2 is aided, also increasing wastage hy a process called depolarization. Depolarization is simply hydrogen-ion removal from solution near the cathode. [Pg.98]

There are many reactions in which the products formed often act as catalysts for the reaction. The reaction rate accelerates as the reaction continues, and this process is referred to as autocatalysis. The reaction rate is proportional to a product concentration raised to a positive exponent for an autocatalytic reaction. Examples of this type of reaction are the hydrolysis of several esters. This is because the acids formed by the reaction give rise to hydrogen ions that act as catalysts for subsequent reactions. The fermentation reaction that involves the action of a micro-organism on an organic feedstock is a significant autocatalytic reaction. [Pg.26]

The dissociation constant for the first process is only 1.1 X 10 lmol at 25°C this corresponds to pKa 2.95 and indicates a rather small free hydrogen-ion concentration (cf. CICH2CO2H, p ffl 2.85) as a result of the strongly H-bonded, undissociated ion-pair [(H30)" F ]. By contrast, K2 = 2.6 X 10 lmol pK2 0.58), indicating that an appreciable number of the fluoride ions in the solution are coordinated by HF to give HF2 rather than by H2O despite the very much higher concentration of H2O molecules. [Pg.815]

Figure 4-419 illustrates the concept of corrosion process under concentration polarization control. Considering hydrogen evolution at the cathode, reduction rate of hydrogen ions is dependent on the rate of diffusion of hydrogen ions to the metal surface. Concentration polarization therefore is a controlling factor when reducible species are in low concentrations (e.g., dilute acids). [Pg.1265]

The hydrogen evolution reaction (h.e.r.) and the oxygen reduction reaction (equations 1.11 and 1.12) are the two most important cathodic processes in the corrosion of metals, and this is due to the fact that hydrogen ions and water molecules are invariably present in aqueous solution, and since most aqueous solutions are in contact with the atmosphere, dissolved oxygen molecules will normally be present. [Pg.96]

The effects of concentration, velocity and temperature are complex and it will become evident that these factors can frequently outweigh the thermodynamic and kinetic considerations detailed in Section 1.4. Thus it has been demonstrated in Chapter 1 that an increase in hydrogen ion concentration will raise the redox potential of the aqueous solution with a consequent increase in rate. On the other hand, an increase in the rate of the cathodic process may cause a decrease in rate when the metal shows an active/passive transition. However, in complex environmental situations these considerations do not always apply, particularly when the metals are subjected to certain conditions of high velocity and temperature. [Pg.307]

Although Table 2.16 shows which metal of a couple will be the anode and will thus corrode more rapidly, little information regarding the corrosion current, and hence the corrosion rate, can be obtained from the e.m.f. of the cell. The kinetics of the corrosion reaction will be determined by the rates of the electrode processes and the corrosion rates of the anode of the couple will depend on the rate of reduction of hydrogen ions or dissolved oxygen at the cathode metal (Section 1.4). [Pg.368]

As the film dissolves more oxide film is formed, i.e. the metal/oxide interface progresses into the metal, and the overall rate may be low enough to be acceptable for a particular process. In other cases, the corrosion products precipitate on the surface of the oxide and either accelerate the overall rate by enhancing diffusion of ions through the porous outer layers or, when less porous layers are formed, access of hydrogen ions to the inner oxide surface is reduced thus decreasing the rate. [Pg.408]

The solution of iron represented in equation 15.1 takes place at local anodes of the steel being processed, while discharge of hydrogen ions with simultaneous dissociation and deposition of the metal phosphate takes place at the local cathodes. Thus factors which favour the cathode process will accelerate coating formation and conversely factors favouring the dissolution of iron will hinder the process. [Pg.708]


See other pages where Hydrogen ions processes is mentioned: [Pg.152]    [Pg.628]    [Pg.222]    [Pg.140]    [Pg.224]    [Pg.257]    [Pg.188]    [Pg.199]    [Pg.11]    [Pg.765]    [Pg.2029]    [Pg.347]    [Pg.489]    [Pg.420]    [Pg.24]    [Pg.372]    [Pg.832]    [Pg.819]    [Pg.112]    [Pg.296]    [Pg.260]    [Pg.6]    [Pg.1265]    [Pg.57]    [Pg.312]    [Pg.322]    [Pg.1236]    [Pg.1278]    [Pg.373]    [Pg.810]    [Pg.880]    [Pg.21]    [Pg.81]   
See also in sourсe #XX -- [ Pg.112 , Pg.117 ]




SEARCH



Effect of Hydrogen Ion on Cation-Exchange Processes

Hydrogen ion on cation-exchange processes

Hydrogen ions in interfacial processe

Hydrogen ions in interfacial processes

Hydrogen ions in interfacial processes of montmorillonite

Hydrogen ions interfacial processe

Hydrogen processes

Hydrogen processing

Hydrogenation process

Hydrogenative process

Ion process

© 2024 chempedia.info