Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydroformylation rhodium-phosphine complex catalytic

In the mid-1960s, Wilkinson revealed that aryl phosphines are suitable for Rh-catalyzed hydroformylation. Subsequently, research mainly focused on metal rhodium [5]. As a result, the replacement of rhodium-phosphine complex catalytic process by Co-based process pushed the science and technology of olefin hydroformylation rapidly forward. The homogeneous catalytic process of UCC (Union Carbide Corporation, now Dow Chemical) is often referred to as the LPO (low-pressure 0X0) process. The reaction conditions then become easy. The conversion rate of olefin and the selectivity of aldehyde increase greatly. [Pg.489]

In 1996, consumption in the western world was 14.2 tonnes of rhodium and 3.8 tonnes of iridium. Unquestionably the main uses of rhodium (over 90%) are now catalytic, e.g. for the control of exhaust emissions in the car (automobile) industry and, in the form of phosphine complexes, in hydrogenation and hydroformylation reactions where it is frequently more efficient than the more commonly used cobalt catalysts. Iridium is used in the coating of anodes in chloralkali plant and as a catalyst in the production of acetic acid. It also finds small-scale applications in specialist hard alloys. [Pg.1115]

The investigation of phosphine complexes of rhodium(I) as catalysts (or catalyst precursors) for the hydroformylation reaction continues both to better elucidate the reaction mechanism and to improve catalyst activity. The presence of dioxygen often decreases the catalytic activity (139), but can also, surprisingly, reactivate hydroformylation catalysts... [Pg.300]

An example of a noncovalent attachment of a metal-phosphine complex to a solid support is presented in Figure 31, as reported by Bianchini et al. (120). The complex is attached via a sulfonated variant of the "triphos" ligand, which is known for its successful application in several catalytic reactions. The ligand is attached to the silica by an ionic bond, which is stable in the absence of water. The catalyst was used for the hydroformylation of styrene and of hex-1-ene in batch mode and showed moderate activity. The triply coordinated rhodium atom is strongly boimd although the conditions were rather harsh (120 °C, 30 bar) the concentration of leached metal measured by atomic emission spectroscopy was at most at the parts per million level. However, for commercial applications, for example, in a process such as hydroformylation of bulk products, these concentrations should be less than 10 ppb 111,121). [Pg.112]

The carbonyl [Ru3(CO),2] is a good cocatalyst for the low pressure hydroformylation of internal alkenes using the classic rhodium phosphine [HRh(CO)(PPh3),] system in the presence of an excess of triphenylphosphine (P/Rh = 200) (22). Starting from a mixture of hex-2- and hex-3-ene, the addition of [Ru3(CO),2l (Rh/Ru = 1/1) increased both the reaction rate and the n/iso ratio of heptanals. More recently, Poilblanc and coworkers (23) have prepared a mixed ruthenium-rhodium complex formulated as [CIRh(/i-CO)(//-dppm)2Ru(CO)2] (dppm is Ph2PCH2PPh2). This species shows catalytic activity in the hydroformylation of pent-l-ene at 40 bar (H2/C0= 1/1) and 75°C. Conversion to hexanals was 90% in 24 hours and the linearity reached 70%. No further report has appeared to determine the role of the two metals in this catalysis. [Pg.131]

A remarkable example of the cooperation of different active sites in a polyfunctional catalyst is the one-step synthesis of 2-ethylhexanol, including a combined hydroformylation, aldol condensation, and hydrogenation process [17]. The catalyst in this case is a carbonyl-phosphine-rhodium complex immobilized on to polystyrene carrying amino groups close to the metal center. Another multistep catalytic process is the cyclooligomerization of butadiene combined with a subsequent hydroformylation or hydrogenation step [24, 25] using a styrene polymer on to which a rhodium-phosphine and a nickel-phosphine complex are anchored (cf Section 3.1.5). [Pg.650]

The concept of TRPTC provides a reasonable explanation for the satisfactory catalytic reactivity of Rh/nonionic phosphine complexes in the case of the two-phase hydroformylation of higher olefins. At a temperature lower than the cloud point, a nonionic phosphine-modified rhodium catalyst would remain in the aqueous phase since the partition of the catalyst between water and a nonpolar aprotic organic solvent strongly favors the aqueous phase. On heating to a temperature higher than the cloud point, however, the catalyst loses its hydrate shell, transfers into the organic phase and then catalyzes the transformation of alkenes to aide-... [Pg.306]

Cobalt, nickel, iron, ruthenium, and rhodium carbonyls as well as palladium complexes are catalysts for hydrocarboxylation reactions and therefore reactions of olefins and acetylenes with CO and water, and also other carbonylation reactions. Analogously to hydroformylation reactions, better catalytic properties are shown by metal hydrido carbonyls having strong acidic properties. As in hydroformylation reactions, phosphine-carbonyl complexes of these metals are particularly active. Solvents for such reactions are alcohols, ketones, esters, pyridine, and acidic aqueous solutions. Stoichiometric carbonylation reaction by means of [Ni(CO)4] proceeds at atmospheric pressure at 308-353 K. In the presence of catalytic amounts of nickel carbonyl, this reaction is carried out at 390-490 K and 3 MPa. In the case of carbonylation which utilizes catalytic amounts of cobalt carbonyl, higher temperatures (up to 530 K) and higher pressures (3-90 MPa) are applied. Alkoxylcarbonylation reactions generally proceed under more drastic conditions than corresponding hydrocarboxylation reactions. [Pg.698]

Related to this work, Seller and Geissler [109] advocated the use of bimetallic catalysts, one for the isomerization and the other for the hydroformylation. Indeed, with a catalytic system comprising a rhodium complex based on a chelating phosphine-phosphite ligand and Ru3(CO)j2 (0.1-0.5 mol%), almost a reversal of the regioselectivity in the reaction with -2-butene in comparison to the monometallic rhodium catalyst l/b = 42 58 TOP = 700 h ) was achieved. [Pg.400]

Hetorogenized Catalysts.—Reaction of [Ru(NH3)60H] + with a Faujasite-type zeolite gives a supported Ru complex, which effects hydroformylation of ethylene the catalytic species may be ruthenium clusters that are trapped in the zeolite cages. The effect of reaction conditions upon the selectivity of the hydroformylation of methyl methacrylate with [RhH(CO)(PPh3)3] or its polymer-anchored analogue has been investigated and hydroformylation of hex-l-ene and cyclo-octa-1,5-diene has been carried out with cobalt, rhodium, and platinum-tin complexes anchored to an ion-exchange resin via quaternary amino-phosphines. ... [Pg.328]

No catalyst has an infinite lifetime. The accepted view of a catalytic cycle is that it proceeds via a series of reactive species, be they transient transition state type structures or relatively more stable intermediates. Reaction of such intermediates with either excess ligand or substrate can give rise to very stable complexes that are kinetically incompetent of sustaining catalysis. The textbook example of this is triphenylphosphine modified rhodium hydroformylation, where a plot of activity versus ligand metal ratio shows the classical volcano plot whereby activity reaches a peak at a certain ratio but then falls off rapidly in the presence of excess phosphine, see Figure... [Pg.6]


See other pages where Hydroformylation rhodium-phosphine complex catalytic is mentioned: [Pg.74]    [Pg.243]    [Pg.118]    [Pg.164]    [Pg.406]    [Pg.302]    [Pg.167]    [Pg.165]    [Pg.51]    [Pg.384]    [Pg.49]    [Pg.50]    [Pg.144]    [Pg.106]    [Pg.40]    [Pg.41]    [Pg.25]    [Pg.664]    [Pg.129]    [Pg.221]    [Pg.1115]    [Pg.150]    [Pg.663]    [Pg.694]    [Pg.526]    [Pg.316]    [Pg.67]    [Pg.2]    [Pg.250]    [Pg.252]    [Pg.294]    [Pg.172]    [Pg.56]    [Pg.220]    [Pg.386]    [Pg.62]    [Pg.336]    [Pg.47]   


SEARCH



Catalytic hydroformylation

Catalytic rhodium complexes

Complex , catalytic

Hydroformylation rhodium

Phosphine hydroformylation

Phosphine rhodium complexes

Phosphine rhodium hydroformylation, catalytic

Rhodium complexes hydroformylation

Rhodium phosphines

© 2024 chempedia.info