Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rhodium complexes ruthenium

When compared with the rhodium complexes, ruthenium systems appear to be characterized by modest levels of catalytic activity. However, by... [Pg.143]

The rhodium complexes are excellent catalysts for hydrogenation of NBR. At low temperature and pressure, high catalyst concentrations are used to obtain a better rate of reactions. Due to higher selectivity of the reaction, pressure and temperature can be increased to very high values. Consequently the rhodium concentration can be greatly reduced, which leads to high turnover rates. The only practical drawback of Rh complex is its high cost. This has initiated the development of techniques for catalyst removal and recovery (see Section VU), as well as alternate catalyst systems based on cheaper noble metals, such as ruthenium or palladium (see Sections IV.A and B). [Pg.562]

Although the actual reaction mechanism of hydrosilation is not very clear, it is very well established that the important variables include the catalyst type and concentration, structure of the olefinic compound, reaction temperature and the solvent. used 1,4, J). Chloroplatinic acid (H2PtCl6 6 H20) is the most frequently used catalyst, usually in the form of a solution in isopropyl alcohol mixed with a polar solvent, such as diglyme or tetrahydrofuran S2). Other catalysts include rhodium, palladium, ruthenium, nickel and cobalt complexes as well as various organic peroxides, UV and y radiation. The efficiency of the catalyst used usually depends on many factors, including ligands on the platinum, the type and nature of the silane (or siloxane) and the olefinic compound used. For example in the chloroplatinic acid catalyzed hydrosilation of olefinic compounds, the reactivity is often observed to be proportional to the electron density on the alkene. Steric hindrance usually decreases the rate of... [Pg.14]

Rhodium and ruthenium complexes have also been studied as effective catalysts. Rh(diphos)2Cl [diphos = l,2-bis(diphenyl-phosphino)ethane] catalyzed the electroreduction of C02 in acetonitrile solution.146 Formate was produced at current efficiencies of ca. 20-40% in dry acetonitrile at ca. -1.5 V (versus Ag wire). It was suggested that acetonitrile itself was the source of the hydrogen atom and that formation of the hydride HRh(diphos)2 as an active intermediate was involved. Rh(bpy)3Cl3, which had been used as a catalyst for the two-electron reduction of NAD+ (nicotinamide adenine dinucleotide) to NADH by Wienkamp and Steckhan,147 has also acted as a catalyst for C02 reduction in aqueous solutions (0.1 M TEAP) at -1.1 V versus SCE using Hg, Pb, In, graphite, and n-Ti02 electrodes.148 Formate was the main... [Pg.378]

Ruthenium complexes of (129) and (130)336 were investigated for the asymmetric hydrogenation of prochiral 2-R-propenoic acids (Scheme 62a) rhodium complexes of these ligands were used for hydrogenation of acetoamido-cinnamic acid methyl ester (Scheme 62c) and hydrogenation of acetophenone-benzylamine (Scheme 62b). The results obtained with these... [Pg.119]

Iridium, rhodium, and ruthenium complexes were found to be active for amidocarbonylation under similar conditions as palladium.609... [Pg.187]

In the iron, ruthenium, osmium, cobalt, and rhodium complexes the xanthato ligands are isobidentate chelating. Selected examples are zra s-Ru(S2COEt)2(P-Me2Ph)2,265 cis- and zra s-Os(S2COMe)2(PPh3)2,266 Co(S2 COMe)3.267... [Pg.609]

As invented by Wender,196,197 a variant of the second transformation can take place if the alkene partner is substituted by a participating group such as a strained cyclopropyl or a cyclobutanone (in the case of a 1,6-diene).198 The whole process, which mainly relies on the use of rhodium or ruthenium complexes,1 9 results in the formal... [Pg.325]

Fig. 3.1 G raphical illustration of numbers of reports per year versus date of publication. Data were obtained by searching the Chemical Abstracts Database using the term hydrogenation catalyzed by ruthenium complexes or osmium complexes or rhodium complexes. These are not comprehensive searches but are still representative of the activity in the field. Fig. 3.1 G raphical illustration of numbers of reports per year versus date of publication. Data were obtained by searching the Chemical Abstracts Database using the term hydrogenation catalyzed by ruthenium complexes or osmium complexes or rhodium complexes. These are not comprehensive searches but are still representative of the activity in the field.
Complexes containing one binap ligand per ruthenium (Fig. 3.5) turned out to be remarkably effective for a wide range of chemical processes of industrial importance. During the 1980s, such complexes were shown to be very effective, not only for the asymmetric hydrogenation of dehydroamino adds [42] - which previously was rhodium s domain - but also of allylic alcohols [77], unsaturated acids [78], cyclic enamides [79], and functionalized ketones [80, 81] - domains where rhodium complexes were not as effective. Table 3.2 (entries 3-5) lists impressive TOF values and excellent ee-values for the products of such reactions. The catalysts were rapidly put to use in industry to prepare, for example, the perfume additive citronellol from geraniol (Table 3.2, entry 5) and alkaloids from cyclic enamides. These developments have been reviewed by Noyori and Takaya [82, 83]. [Pg.62]

The use of water-soluble ligands was referred to previously for both ruthenium and rhodium complexes. As in the case of ruthenium complexes, the use of an aqueous biphasic system leads to a clear enhancement of selectivity towards the unsaturated alcohol [34]. Among the series of systems tested, the most convenient catalysts were obtained from mixtures of OsCl3 3H20 with TPPMS (or better still TPPTS) as they are easily prepared and provide reasonable activities and modest selectivities. As with their ruthenium and rhodium analogues, the main advantage is the ease of catalyst recycling with no loss of activity or selectivity. However, the ruthenium-based catalysts are far superior. [Pg.426]

This type of hydrodehalogenation has been performed generally in the presence of organic or inorganic bases to neutralize the hydrogen halides formed. Among published results, the use of rhodium complexes as catalysts dominates, but palladium and ruthenium complexes have also been applied on a frequent basis. [Pg.517]

Hsu et al. [15] applied a bimetallic catalyst comprising rhodium and ruthenium for the hydrogenation to combine the high selectivity of the rhodium complex with the lower cost of the ruthenium complex. When the amount of each metal is identical, the catalytic activity of the bimetallic complex catalyst system was similar to that of the single rhodium-complex catalyst, containing... [Pg.562]

Unfunctionalized alkenes have posed more of a problem, as they have no polar moiety which can coordinate to the catalyst. Such an additional metal binding site next to the C = C bond has proven to be crucial for directing coordination to the catalyst and, therefore, rhodium and ruthenium complexes, which are highly selective for functionalized alkenes, generally provide only low enan-tioselectivity for this class of substrates. [Pg.1049]

Initially, research focused on the use of C2-symmetric rhodium and ruthenium-phosphine and phosphinite complexes a rhodium-phosphine complex 3 (Fig. 30.2) was used in the first reported enantioselective hydrogenation of substrate 1 (Table 30.1, entry 1) [1],... [Pg.1050]


See other pages where Rhodium complexes ruthenium is mentioned: [Pg.1724]    [Pg.1724]    [Pg.637]    [Pg.79]    [Pg.80]    [Pg.127]    [Pg.139]    [Pg.153]    [Pg.204]    [Pg.820]    [Pg.473]    [Pg.14]    [Pg.210]    [Pg.249]    [Pg.268]    [Pg.216]    [Pg.168]    [Pg.113]    [Pg.172]    [Pg.362]    [Pg.325]    [Pg.696]    [Pg.631]    [Pg.638]    [Pg.1073]    [Pg.1338]    [Pg.1372]    [Pg.1427]    [Pg.16]   
See also in sourсe #XX -- [ Pg.1076 ]

See also in sourсe #XX -- [ Pg.4 , Pg.1076 ]




SEARCH



Hydride Complexes of Ruthenium, Rhodium, and Iridium

Rhodium ruthenium

Ruthenium complexes, reactions rhodium phosphine system

© 2024 chempedia.info