Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrocarbon interactions between molecules

Surface tension accounts for a number of everyday phenomena. For example, a droplet of liquid suspended in air or on a waxy surface is spherical because the surface tension pulls the molecules into the most compact shape, a sphere (Fig. 5.14). The attractive forces between water molecules are greater than those between water and wax, which is largely hydrocarbon. Surface tension decreases as the temperature rises and the interactions between molecules are overcome by the increased molecular motion. [Pg.309]

Replacement of gas by the nonpolar, e.g., hydrocarbon phase (or oil phase) is used to modify the interactions between molecules in a spread film of investigated long-chain substances [6,15,17,18]. The nonpolar solvent-water interface possesses the advantage over that between gas and water, that the cohesion (i.e., interactions between adsorbed molecules due to dipole and van der Waals forces) is negligible. Thus, at the oil-water interfaces behavior of adsorbates is much closer to ideal, but quantitative interpretation may be uncertain, in particular for the higher chains which are predominantly dissolved in the oil phase to an unknown activity. Adsorption of dipolar substances at the w/a and w/o interfaces changes surface tension and modifies the surface potential of water [15] ... [Pg.33]

Polar interactions between molecules arise from permanent or Induced dipoles existing in the molecules and do not result from permanent charges as in the case of Ionic interactions. Examples of polar substances having permanent dipoles would be alcohols, ketones, aldehydes etc. Examples of polarizable substances would be aromatic hydrocarbons such as benzene or toluene. It is considered that, when a molecule carrying a permanent dipole comes Into close proximity to a polarizable molecule, the field from the molecule with the permanent dipole induces a dipole in the polarizable molecule and thus electrical interaction can occur. It follows that to selectively retain a polar solute, then the stationary phase must also be polar and contain, perhaps, hydroxyl groups. If the solutes to be separated are strongly polar, then perhaps a polarizable substance such as an aromatic hydrocarbon could be employed as the stationary phase. However, to maintain strong polar interactions with the stationary phase (as opposed to the mobile phase) the mobile phase must be relatively non-polar or dispersive in nature. [Pg.6]

It should be noted that the use of the KVSj charts implies that both the gas phase and the hydrate phase can be represented as ideal solutions. This means that the Kvsi of a given component is independent of the other components present, with no interaction between molecules. While the ideal solution model is approximately acceptable for hydrocarbons in the hydrate phase (perhaps because of a shielding effect by the host water cages), the ideal solution assumption is not accurate for a dense gas phase. Mann et al. (1989) indicated that gas gravity may be a viable way of including gas nonidealities as a composition variable. [Pg.226]

For van der Waals interactions between molecules in a gas phase, the orientation interaction can yield from 0% (nonpolar molecules) up to 70% (molecules of large permanent dipole moment, like H2O) of the value of the contribution of the induction interaction in oi j is usually low, about 5 to 10% the contribution of the dispersion interaction might be between 24% (water) and 100% (nonpolar hydrocarbons) for numerical data, see Reference 34. [Pg.197]

With the development of specific equipment and processes by which thermal be diffusion is now carried out, separation of substances from their mixtures can often carried out more cheaply by this method, if applicable, than by other separation techniques. Amongst the successful separations effected by thermal diffusion are those of the isotopes of helium and the isotopes of chlorine gas. The method had also been used to effect separation of the isotopes of uranium during the years of World War II in the U.S.A. Constituent hydrocarbons can easily be separated from their mixture by liquid-phase thermal diffusion, because interaction between molecules of different hydrocarbons is practically non-existent and, consequently, each hydrocarbon molecule of the mixture acts independently under the influence of the applied temperature gradient. Another use of thermal diffusion of special interest is its applicability to the separation of mixtures of liquids of close boiling points and of mixtures of isomers, into their respective components. [Pg.415]

The shape of the surface pressure-area isotherm depends on the lateral interactions between molecules. This in turn depends on molecular packing which is influenced by factors such as the size of head group, the presence of polar groups, the number of hydrocarbon chains and their conformation (straight or bent). Here we focus on two fatty acids with different chain lengths and consider the structures formed in monolayers at different surface pressures as a function of the area per molecule. [Pg.174]

In the case of the retro Diels-Alder reaction, the nature of the activated complex plays a key role. In the activation process of this transformation, the reaction centre undergoes changes, mainly in the electron distributions, that cause a lowering of the chemical potential of the surrounding water molecules. Most likely, the latter is a consequence of an increased interaction between the reaction centre and the water molecules. Since the enforced hydrophobic effect is entropic in origin, this implies that the orientational constraints of the water molecules in the hydrophobic hydration shell are relieved in the activation process. Hence, it almost seems as if in the activated complex, the hydrocarbon part of the reaction centre is involved in hydrogen bonding interactions. Note that the... [Pg.168]

A typical SSIMS spectrum of an organic molecule adsorbed on a surface is that of thiophene on ruthenium at 95 K, shown in Eig. 3.14 (from the study of Cocco and Tatarchuk [3.28]). Exposure was 0.5 Langmuir only (i.e. 5 x 10 torr s = 37 Pa s), and the principal positive ion peaks are those from ruthenium, consisting of a series of seven isotopic peaks around 102 amu. Ruthenium-thiophene complex fragments are, however, found at ca. 186 and 160 amu each has the same complicated isotopic pattern, indicating that interaction between the metal and the thiophene occurred even at 95 K. In addition, thiophene and protonated thiophene peaks are observed at 84 and 85 amu, respectively, with the implication that no dissociation of the thiophene had occurred. The smaller masses are those of hydrocarbon fragments of different chain length. [Pg.103]

State, as shown in Fig. 10.8 [65]. The "trefoil bonding state, previously proposed and predicted to exist in aromatic hydrocarbon annulene molecules, is finally encountered, albeit in an extended intermetallic network [65]. This also highlights the important role of interactions between incompletely filled lone pairs in the stabilization of low-dimensional anion structures. [Pg.168]

It follows that in spite of the apolar coat surrounding water-containing AOT-reversed micelles and their dispersion in an apolar medium, some microscopic processes are able to establish intermicellar attractive interactions. These intermicellar interactions between AOT-reversed micelles increase with increasing temperature or the chain length of the hydrocarbon solvent molecule, thus leading to the enhancement of the clustering process [244-246], whereas they are reduced in the presence of inorganic salts [131]. [Pg.494]


See other pages where Hydrocarbon interactions between molecules is mentioned: [Pg.35]    [Pg.54]    [Pg.579]    [Pg.263]    [Pg.105]    [Pg.265]    [Pg.709]    [Pg.24]    [Pg.385]    [Pg.389]    [Pg.609]    [Pg.312]    [Pg.609]    [Pg.342]    [Pg.82]    [Pg.12]    [Pg.1703]    [Pg.23]    [Pg.186]    [Pg.2609]    [Pg.194]    [Pg.239]    [Pg.244]    [Pg.532]    [Pg.534]    [Pg.119]    [Pg.71]    [Pg.48]    [Pg.642]    [Pg.51]    [Pg.809]    [Pg.195]    [Pg.115]    [Pg.856]    [Pg.77]    [Pg.128]   


SEARCH



Hydrocarbon molecules

Hydrocarbons, hydrocarbon 2 molecules)

Molecule interaction

© 2024 chempedia.info