Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydride transfer, lithium enolates

In the aldol-Tishchenko reaction, a lithium enolate reacts with 2 mol of aldehyde, ultimately giving, via an intramolecular hydride transfer, a hydroxy ester (51) with up to three chiral centres (R, derived from rYhIO). The kinetics of the reaction of the lithium enolate of p-(phenylsulfonyl)isobutyrophenone with benzaldehyde have been measured in THF. ° A kinetic isotope effect of fee/ o = 2.0 was found, using benzaldehyde-fil. The results and proposed mechanism, with hydride transfer rate limiting, are supported by ab initio MO calculations. [Pg.13]

The mechanism of the aldol-Tishchenko reaction has been probed by determination of kinetics and isotope effects for formation of diol-monoester on reaction between the lithium enolate of p-(phenylsulfonyl)isobutyrophenone (LiSIBP) and two molecules of benzaldehyde. ". The results are consistent with the formation of an initial lithium aldolate (25) followed by reaction with a second aldehyde to form an acetal (26), and finally a rate-limiting intramolecular hydride transfer (Tishchenko... [Pg.355]

The excellent agreement with the experimental and calculated isotope effect (calculated for formaldehyde, 3.22, and for acetaldehyde, 3.3 experimental value 2.9) supports the computational approach. This suggests that the computed transition structure for hydride transfer in the reaction of the lithium enolate of acetone with acetaldehyde (Figure 30) is realistic. [Pg.38]

The mixed Tishchenko reaction involves the reaction of the aldol prodnct 113 from one aldehyde with another aldehyde having no a-hydrogens to yield an ester The products were proposed to be formed through an aldol step (equation 33), followed by addition of another aldehyde (equation 34) and an intramolecular hydride transfer (equation 35). However, several aspects of this mechanism need to be clarified. As part of the continuing mechanistic studies carried out by Streitwieser and coworkers on reactions of alkali enolates ", it was found that the aldol-Tishchenko reaction between certain lithium eno-lates and benzaldehyde proceeded cleanly in thf at room temperature". Reaction of the lithium enolate of isobutyrophenone (Liibp) with 1 equiv of benzaldehyde in thf at — 65 °C affords a convenient route to the normal aldol product 113 (R = R" = Ph, R = Me). At room temperature, however, the only product observed after acid workup was the diol-monoester 116, apparently derived from the corresponding lithium ester alcoholate (115, R = R" = Ph, R = Me), which was quantitatively transformed into 116 after quenching. As found in other systems", only the anti diol-monoester diastereomer was formed. [Pg.42]

The optimal reaction conditions for reactions involving catalyst 33 and substrates 16a-c or 34 were investigated, and it was found that best results were obtained at room temperature [36] with toluene as the solvent [37] and with sodium hydroxide or sodium hydride as the base. In particular, the use of potassium hydroxide always gave lower enantioselectivities than sodium hydroxide, and lithium hydroxide was not effective in these reactions. Attempts to use aqueous sodium hydroxide as the base under liquid-liquid phase-transfer conditions resulted in the formation of a negligible amount of product [33,34]. An important finding of these optimization studies was the presence of a significant background reaction [38], Hence, one role of catalyst 33 must be to enhance the reactivity of an enolate when it is coordinated to the catalyst relative to the uncoordinated enolate. [Pg.176]

The reaction between ethyl Hthiopropiolate and the N-acylpyridinium salt formed by reaction of 4-methoxy-3-methyl-5-(triisopropylsilyl)pyridine 2363 with (+)-frafis-2-(a-cumyl)-cyclohexyl chloroformate (TCC chloro-formate) was the starting point in the synthesis of (-l-)-aUopumihotoxin 267A (1718) by Comins et al. (Scheme 301). The dihydropyridone product (—)- 2364 was obtained diastereoselectively (>96%) before hydrogenation to the saturated ester (+)-2365. However, some epimerization of the methyl substituent was apparent after cleavage of the TCC carbamate with lithium methoxide and cyclization to the indolizidinone (—)-2366 (dr 8 1). Acetoxylation at C-8 with lead tetraacetate was stereoselective, and introduced the acetate from the axial direction, possibly by stereoelec-tronicaUy-controUed intramolecular transfer of acetate from a lead—enol intermediate. The acetoxy product (—)-2367 was protodesilylated with formic acid, after which a one-pot tandem reduction with K-Selectride followed by hthium aluminum hydride gave diol (- -)-2368 with complete... [Pg.430]


See other pages where Hydride transfer, lithium enolates is mentioned: [Pg.43]    [Pg.800]    [Pg.837]    [Pg.65]    [Pg.800]    [Pg.101]    [Pg.41]    [Pg.173]    [Pg.294]    [Pg.111]    [Pg.150]    [Pg.169]    [Pg.111]    [Pg.53]   
See also in sourсe #XX -- [ Pg.42 , Pg.43 , Pg.44 ]




SEARCH



Enolate lithium

Enolates lithium

Hydride transfer

© 2024 chempedia.info