Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydride ordered

How do the following hydrides react with water NaH, CH4, SiH4 and HI Comment on these reactions in terms of the nature of the chemical bonds in these compounds. Suggest reasons for the increase in acidity in the series PH3, HjS, HCl. How would you seek to establish this order experimentally ... [Pg.117]

Calcium hydride has also been used as the base[2,3]. A comparison of the effect of metal cations indicated that yields increase in the order < Na < Li and a procedure in which -BuLi serves as the base has been developed [4]. [Pg.69]

A further improvement in the cuprate-based methodology for producing PGs utilizes a one-pot procedure (203). The CO-chain precursor (67) was first functionalized with zirconocene chloride hydride ia THF. The vinyl zirconium iatermediate was transmetalated direcdy by treatment with two equivalents of / -butyUithium or methyUithium at —30 to —70° C. Sequential addition of copper cyanide and methyUithium eUcited the /V situ generation of the higher order cyanocuprate which was then reacted with the protected enone to give the PG. [Pg.162]

A flow-injection system with electrochemical hydride generation and atomic absorption detection for the determination of arsenic is described. This technique has been developed in order to avoid the use sodium tetrahydroborate, which is capable of introducing contamination. The sodium tetrahydroborate (NaBH ) - acid reduction technique has been widely used for hydride generation (HG) in atomic spectrometric analyses. However, this technique has certain disadvantages. The NaBH is capable of introducing contamination, is expensive and the aqueous solution is unstable and has to be prepared freshly each working day. In addition, the process is sensitive to interferences from coexisting ions. [Pg.135]

This process has many similarities to the Phillips process and is based on the use of a supported transition metal oxide in combination with a promoter. Reaction temperatures are of the order of 230-270°C and pressures are 40-80 atm. Molybdenum oxide is a catalyst that figures in the literature and promoters include sodium and calcium as either metals or as hydrides. The reaction is carried out in a hydrocarbon solvent. [Pg.211]

Propose a mechanism that could account for the overall four-thirds-order kinetics and the appearance of the dialkylaluminum hydride concentration to the one-third power. [Pg.255]

There is an excellent correlation between these data and the gas-phase data, in terms both of the stability order and the energy differences between carbocations. A plot of the gas-phase hydride affinity versus the ionization enthalpy gives a line of slope 1.63 with a correlation coefficient of 0.973. This result is in agreement with the expectation that the gas-phase stability would be somewhat more sensitive to structure than the solution-phase stability. The energy gap between tertiary and secondary ions is about 17kcal/mol in the gas phase and about 9.5 kcal/mole in the SO2CIF solution. [Pg.280]

A rather special procedure for the preparation of 21-hydroxy-20-ketopreg-nanes starts with the 17a-ethoxyethynyl-17 -hydroxy steroids described earlier. Free radical addition of ethanethiol to the triple bond, followed by acid-catalyzed hydrolysis and dehydration gives the 20-thioenol ether 21-aldehyde. This can be reduced with lithium aluminum hydride to the C-21 alcohol and then hydrolyzed to the C-20 ketone in the presence of mercuric chloride. The overall yield, without isolation of intermediates, is in the order of 50% ... [Pg.212]

Of the several syntheses available for the phenothiazine ring system, perhaps the simplest is the sulfuration reaction. This consists of treating the corresponding diphenylamine with a mixture of sulfur and iodine to afford directly the desired heterocycle. Since the proton on the nitrogen of the resultant molecule is but weakly acidic, strong bases are required to form the corresponding anion in order to carry out subsequent alkylation reactions. In practice such diverse bases as ethylmagnesium bromide, sodium amide, and sodium hydride have all been used. Alkylation with (chloroethyl)diethylamine affords diethazine (1), a compound that exhibits both antihista-minic and antiParkinsonian activity. Substitution of w-(2-chloroethyl)pyrrolidine in this sequence leads to pyrathiazine (2), an antihistamine of moderate potency. [Pg.373]

In addition to its other properties, interest in the potential use of the vasodilative properties of prostaglandin El, alprostadil ( ), has led to several conceptually different syntheses.For this purpose, the classic Corey process has to be modified by reversing the order of addition of the side chains to allow for convenient removal of the unwanted double bond in the upper side chain. For example, Corey lactone is protected with dihydropyran (acid catalysis), reduced to the lactol with diisobutyaluminum hydride, and then subjected to the usual Wittig reaction to give intermediate This is... [Pg.2]

In order for an intermetallic compound to react directly and reversibly with hydrogen to form a distinct hydride phase, it is necessary that at least one of the metal components be capable of reacting directly and reversibly with hydrogen to form a stable binary hydride. [Pg.212]

In order to fully understand the electrochemical behaviour of AB, hydrides, a knowledge of their chemical properties is required. Van Vucht et al. [25] were the first to prepare LaNi5 hydride and it is arguably the most thoroughly investigated H—storage compound. It reacts rapidly with hydrogen at room temperature at a pressure of several atmospheres above the equilibrium plateau pressure. PC isotherms for this system are shown in Fig. 3. [Pg.215]

Neutron diffraction studies have shown that in both systems Pd-H (17) and Ni-H (18) the hydrogen atoms during the process of hydride phase formation occupy octahedral positions inside the metal lattice. It is a process of ordering of the dissolved hydrogen in the a-solid solution leading to a hydride precipitation. In common with all other transition metal hydrides these also are of nonstoichiometric composition. As the respective atomic ratios of the components amount to approximately H/Me = 0.6, the hydrogen atoms thus occupy only some of the crystallographic positions available to them. [Pg.250]

Moreover, in the case of hydride intervention, still a further factor, namely the kinetics of hydrogen diffusion into the metal, influences also the overall kinetics by removing a reactant from a reaction zone. In order to compare the velocity of reaction of hydrogen, catalyzed by palladium, with the velocity of the same reaction proceeding on the palladium hydride catalyst, it might be necessary to conduct the kinetic investigations under conditions when no hydride formation is possible and also when a specially prepared hydride is present in the system from the very beginning. [Pg.256]


See other pages where Hydride ordered is mentioned: [Pg.1539]    [Pg.1538]    [Pg.300]    [Pg.1539]    [Pg.1538]    [Pg.300]    [Pg.425]    [Pg.258]    [Pg.64]    [Pg.503]    [Pg.498]    [Pg.561]    [Pg.71]    [Pg.177]    [Pg.337]    [Pg.335]    [Pg.474]    [Pg.66]    [Pg.90]    [Pg.297]    [Pg.296]    [Pg.140]    [Pg.177]    [Pg.219]    [Pg.30]    [Pg.35]    [Pg.93]    [Pg.1299]    [Pg.342]    [Pg.222]    [Pg.272]    [Pg.214]    [Pg.227]    [Pg.8]    [Pg.87]    [Pg.246]    [Pg.74]    [Pg.246]    [Pg.263]    [Pg.263]   
See also in sourсe #XX -- [ Pg.91 ]




SEARCH



Hydrides magnetic ordering

Hydrides ordering temperatures

Hydrides sublattice ordering

© 2024 chempedia.info