Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydration geometry

The model has been tested for a wide variety of gas-zeolite combinations. Gases of increasing complexity were considered Ar(non-polar), (quadrupole moment, no dipole moment), NgO (quad-rupole moment, small dipole moment), and NHg (large dipole moment, small quadrupole moment). The zeolites tested were all in the synthetic faujasite family however, they ranged from the cation-rich zeolite X to the cation-poor zeolite Y. Cation geometries considered in the tests were those typical of the dehydrated zeolite form and those typical of the hydrated geometry (associated with NHg adsorption). Two forms of representative cations were considered, Li and Na+. [Pg.25]

Obtained with the assumption of an hydration geometry with water molecules at two different distances from the metal ion the ratio of the areas of these two sites was fixed to 2 1. [Pg.534]

T.D.Fenn, M.J.Schnieders, A.T.Brunger,and V.S.Pande,Biophys./.,98(12),2984-2992 (2010). Polarizable Atomic Multipole X-Ray Refinement Hydration Geometry and Application to Macromolecules. [Pg.84]

A number of refinements and applications are in the literature. Corrections may be made for discreteness of charge [36] or the excluded volume of the hydrated ions [19, 37]. The effects of surface roughness on the electrical double layer have been treated by several groups [38-41] by means of perturbative expansions and numerical analysis. Several geometries have been treated, including two eccentric spheres such as found in encapsulated proteins or drugs [42], and biconcave disks with elastic membranes to model red blood cells [43]. The double-layer repulsion between two spheres has been a topic of much attention due to its importance in colloidal stability. A new numeri-... [Pg.181]

The dichromate(VI) salts may be obtained by the addition of acid to the chromate(VI) salts. However, they are better prepared by adding one-half the acid equivalent of a metal hydrate, oxide, or carbonate to an aqueous solution of CrO, then removing the water and/or CO2. Most dichromates(VI) are water-soluble, and the salts contain water(s) of hydration. However, the normal salts of K, Cs, and Rb are anhydrous. Dichromate(VI) compounds of the colorless cations are generally orange-red. The geometry of Ci2 is described as two tetrahedral CrO linked by the shared odd oxygen (72). [Pg.137]

In our last example we return to the issue of the possible damaging effects of the standard geometry constraints. Two long trajectories have been computed for a partially hydrated dodecamer DNA duplex of the previous example, first by using ICMD and second with Cartesian coordinate molecular dynamics without constraints [54]. Both trajectories started from the same initial conformation with RMSD of 2.6 A from the canonical B-DNA form. Figure 5 shows the time evolution of RMSD from the canonical A and B conformations. Each point in the figure corresponds to a 15 ps interval and shows an average RMSD value. We see that both trajectories approach the canonical B-DNA, while the RMSD... [Pg.128]

To determine the appropriate injection rate, a field test should first be performed at one of the industry-sponsored full-scale loop test facilities. The optimum mixture, its injection rate, and location of injcciioii points will be a function of flow geometry, fluid properties, pressure leinpcrature relationships, etc., that will be encountered in the actual field application. The appropriate injection rate and location of injection jii iiiis can be determined from this test by observing pressure increases, which indicate that hydrate plugs are forming. [Pg.108]

Later, closer examination revealed that these reactions are attended by a marked change in the geometry of the hydrated ions. [Pg.262]

Both these methods require equilibrium constants for the microscopic rate determining step, and a detailed mechanism for the reaction. The approaches can be illustrated by base and acid-catalyzed carbonyl hydration. For the base-catalyzed process, the most general mechanism is written as general base catalysis by hydroxide in the case of a relatively unreactive carbonyl compound, the proton transfer is probably complete at the transition state so that the reaction is in effect a simple addition of hydroxide. By MMT this is treated as a two-dimensional reaction proton transfer and C-0 bond formation, and requires two intrinsic barriers, for proton transfer and for C-0 bond formation. By NBT this is a three-dimensional reaction proton transfer, C-0 bond formation, and geometry change at carbon, and all three are taken as having no barrier. [Pg.20]

Shukla MK, Leszczynski J (2005) Effect of hydration on the lowest singlet jiji excited-state geometry of guanine a theoretical study. J Phys ChemB 109 17333-17339... [Pg.337]

In this second example, we examine simple systems near the water-hexane interface. Specifically, we calculate the difference in the free energy of hydrating a hard-sphere solute of radius a, considered as the reference state, and a model solute consisting of a point dipole p located at the center of a cavity [11]. We derive the formula for A A assuming that the solute is located at a fixed distance z from the interface, and subsequently we examine the dependence of the free energy on z. The geometry of the system is shown in Fig. 2.3. [Pg.44]

We have demonstrated that a combined experimental (27A1 3Q MAS NMR) and theoretical (QM-Pot employing the bare framework model) approach represents a powerful tool for the determination of the local geometry of framework A104 tetrahedra, the prediction of27A1 isotropic chemical shifts in hydrated silicon rich zeolites, and the identification of A1 siting in the framework of silicon-rich zeolites. Experimental evidence is provided for the occupation of at least 10 out of 24 distinguishable framework T sites by A1 atoms in silicon-rich ZSM-5. The conclusion is reached that the A1 distribution over the framework T sites is neither random nor controlled by a simple rule, but depends on the conditions of the zeolite synthesis. [Pg.33]

Bi-0 2.54(l)-2.68(2) A], In contrast, the nine-coordinate capped square antiprism geometry for bismuth in [Bi(N03)3(H20)3] (18-crown-6) does not involve the expected multidentate ether coordination to bismuth, but rather a hydrogen-bonded interaction of the crown ether with the hydrated bismuth center chelated by bidentate nitrate groups [Bi-0 2.38(2)—2.56(2) A] 32, implying that the hexado-... [Pg.318]


See other pages where Hydration geometry is mentioned: [Pg.410]    [Pg.1243]    [Pg.410]    [Pg.1243]    [Pg.425]    [Pg.2587]    [Pg.11]    [Pg.632]    [Pg.433]    [Pg.433]    [Pg.394]    [Pg.328]    [Pg.332]    [Pg.4]    [Pg.381]    [Pg.248]    [Pg.381]    [Pg.404]    [Pg.206]    [Pg.355]    [Pg.135]    [Pg.98]    [Pg.289]    [Pg.1150]    [Pg.80]    [Pg.87]    [Pg.341]    [Pg.30]    [Pg.122]    [Pg.71]    [Pg.267]    [Pg.318]    [Pg.335]    [Pg.369]    [Pg.372]    [Pg.145]    [Pg.133]   


SEARCH



Geometry hydrates

Geometry hydrates

Hydration shell geometry

© 2024 chempedia.info