Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hybridisation bonds

A covalent bond between two atoms requires two electrons and two orbitals, one for each atom.f The factors determining the properties of the covalent bonds formed by an atom are primarily the number and nature of the orbitals (hybridised bond orbitals) available to the atom, and the number of electrons that it can use in bond formation without losing its electrical neutrality. The opportunities for stabilisation through resonance of covalent bonds among alternative positions are also important. [Pg.228]

C j becomes sp3 hybridised bonding orbital. These terminal p orbitals also overlap the other p orbitals coming in between. Thus these are two stereochemically different ways in which the overlap can take place in the formation of a cyclic structure. [Pg.75]

We already know from the chapter on the acidity of protons that in an sp hybridised bond the electrons are held closer to the carbon than in an sp hybridised bond. So, it is harder to break the C-X to form a carbonium ion, because it is, first, a stronger bond, and secondly, less polarised towards the leaving group. [Pg.164]

Jansta, J. Dousek, F.P. Some aspects of existence of elementary carbon with sp-hybridised bonds. Carbon 1980, 18, 433-437. [Pg.50]

It was suggested some time ago that, as ring size increased, so alternate single and double bonds might be expected rather than hybridised bonds, and the stabilisation of [4n+2]annulenes and the destabilisation of [4 ]annulenes should decrease [7,8]. This has been represented pictorially as in the diagram in Chapter I. [Pg.372]

When elements in Period 2 form covalent bonds, the 2s and 2p orbitals can be mixed or hybridised to form new, hybrid orbitals each of which has. effectively, a single-pear shape, well suited for overlap with the orbital of another atom. Taking carbon as an example the four orbitals 2s.2p.2p.2p can all be mixed to form four new hybrid orbitals (called sp because they are formed from one s and three p) these new orbitals appear as in Figure 2.9. i.e. they... [Pg.55]

The element before carbon in Period 2, boron, has one electron less than carbon, and forms many covalent compounds of type BX3 where X is a monovalent atom or group. In these, the boron uses three sp hybrid orbitals to form three trigonal planar bonds, like carbon in ethene, but the unhybridised 2p orbital is vacant, i.e. it contains no electrons. In the nitrogen atom (one more electron than carbon) one orbital must contain two electrons—the lone pair hence sp hybridisation will give four tetrahedral orbitals, one containing this lone pair. Oxygen similarly hybridised will have two orbitals occupied by lone pairs, and fluorine, three. Hence the hydrides of the elements from carbon to fluorine have the structures... [Pg.57]

There are a number of different ways that the molecular graph can be conununicated between the computer and the end-user. One common representation is the connection table, of which there are various flavours, but most provide information about the atoms present in the molecule and their connectivity. The most basic connection tables simply indicate the atomic number of each atom and which atoms form each bond others may include information about the atom hybridisation state and the bond order. Hydrogens may be included or they may be imphed. In addition, information about the atomic coordinates (for the standard two-dimensional chemical drawing or for the three-dimensional conformation) can be included. The connection table for acetic acid in one of the most popular formats, the Molecular Design mol format [Dalby et al. 1992], is shown in Figure 12.3. [Pg.659]

Table 2.6. Structural features (carbon hybridisation, electronegativity, ring size) and typical one-bond CH coupling constants Jch (Hz) ... Table 2.6. Structural features (carbon hybridisation, electronegativity, ring size) and typical one-bond CH coupling constants Jch (Hz) ...
Here, the bonding between carbon atoms is briefly reviewed fuller accounts can be found in many standard chemistry textbooks, e.g., [1]. The carbon atom [ground state electronic configuration (ls )(2s 2px2py)] can form sp sp and sp hybrid bonds as a result of promotion and hybridisation. There are four equivalent 2sp hybrid orbitals that are tetrahedrally oriented about the carbon atom and can form four equivalent tetrahedral a bonds by overlap with orbitals of other atoms. An example is the molecule ethane, CjH, where a Csp -Csp (or C-C) a bond is formed between two C atoms by overlap of sp orbitals, and three Csp -Hls a bonds are formed on each C atom. Fig. 1, Al. [Pg.1]

In the third type of hybridisation of the valence electrons of carbon, two linear 2sp orbitals are formed leaving two unhybridised 2p orbitals. Linear a bonds are formed by overlap of the sp hybrid orbitals with orbitals of neighbouring atoms, as in the molecule ethyne (acetylene) C2H2, Fig. 1, A3. The unhybridised p orbitals of the carbon atoms overlap to form two n bonds the bonds formed between two C atoms in this way are represented as Csp Csp, or simply as C C. [Pg.2]

Carbon has six electrons around the atomic core as shown in Fig. 2. Among them two electrons are in the K-shell being the closest position from the centre of atom, and the residual four electrons in the L-shell. TTie former is the Is state and the latter are divided into two states, 2s and 2p. The chemical bonding between neighbouring carbon atoms is undertaken by the L-shell electrons. Three types of chemical bonds in carbon are single bond contributed from one 2s electron and three 2p electrons to be cited as sp bonding, double bond as sp and triple bond as sp from the hybridised atomic-orbital model. [Pg.31]

Carbon with its wide range of sp bond hybridisation appears as the key element of a future nanotechnology. However, so far there is almost no control over the formation processes, and the structures of interest cannot be built at will. Tubes, for example, are produced under the very virulent conditions of a plasma discharge and one would like to have more elegant tools to manipulate the carbon structures, a task which remains a challenge for the future. [Pg.105]

For elements adjacent to the noble gases the principal orbitals used in bond formation are those formed by hybridisation of the s and p orbitals. For the transition elements there are nine stable orbitals to be taken into consideration, which in general are hybrids of five d orbitals, one s orbital, and three p orbitals. An especially important set of six bond orbitals, directed toward the comers of a regular octahedron, are the d2sps orbitals, which are involved in most of the Werner octahedral complexes formed by the transition elements. [Pg.228]

Apart from type 62, which is only slowly convergent to the optimised geometry, the other centres are well described by the ROHF method. Polyhedral views of the three type a structures are shown in Fig. 6. These all illustrate the change of hybridisation at the point of muonium attachment and at the adjacent carbon atom where the unpaired electron is effectively localised as expected from addition to an alkene. The bi and c defects (Fig. 7) are quite different. The expected hybridisation change to sp is clearly present for the atom bonded to muonium, but other significant distortions are not obvious. This is consistent with the prediction from resonance theory (Fig. 8) that the unpaired electron for these structures is delocalised over a large number of centres. [Pg.453]

A carbon atom combining with four other atoms clearly does not use the one 2s and the three 2p atomic orbitals that would now be available, for this would lead to the formation of three directed bonds, mutually at right angles (with the three 2p orbitals), and one different, non-directed bond (with the spherical 2s orbital). Whereas in fact, the four C—H bonds in, for example, methane are known to be identical and symmetrically (tetrahedrally) disposed at an angle of 109° 28 to each other. This may be accounted for on the basis of redeploying the 2s and the three 2p atomic orbitals so as to yield four new (identical) orbitals, which are capable of forming stronger bonds (cf. p. 5). These new orbitals are known as sp3 hybrid atomic orbitals, and the process by which they are obtained as hybridisation ... [Pg.4]

These are all valid ways of deploying one 2s and three 2p atomic orbitals—in the case of sp2 hybridisation there will be one unhybridised p orbital also available (p. 8), and in the case of sp1 hybridisation there will be two (p. 10). Other, equally valid, modes of hybridisation are also possible in which the hybrid orbitals are not necessarily identical with each other, e.g. those used in CH2C12 compared with the ones used in CC14 and CH4. Hybridisation takes place so that the atom concerned can form as strong bonds as possible, and so that the other atoms thus bonded (and the electron pairs constituting the bonds) are as far apart from each other as possible, i.e. so that the total intrinsic energy of the resultant compound is at a minimum. [Pg.5]

The change is also pronounced with C=0, for not only is the nitrogen atom, with its electron pair, bonded to an electron-withdrawing group through an sp2 hybridised carbon atom (c/ p. 59), but an electron-withdrawing mesomeric effect can also operate ... [Pg.68]

The exact reverse of the above is seen with aniline (13), which is a very weak base (pKa = 4-62) compared with ammonia (pKa = 9-25) or cyclohexylamine (pKa = 10-68). In aniline the nitrogen atom is again bonded to an sp2 hybridised carbon atom but, more significantly, the unshared electron pair on nitrogen can interact with the delocalised 7r orbitals of the nucleus ... [Pg.69]

Arynes present structural features of some interest. They clearly cannot be acetylenic in the usual sense as this would require enormous deformation of the benzene ring in order to accommodate the 180° bond angle required by the sp1 hybridised carbons in an alkyne (p. 9). It seems more likely that the delocalised 7i orbitals of the aromatic system are left largely untouched (aromatic stability thereby being conserved), and that the two available electrons are accommodated in the original sp2 hybrid orbitals (101) ... [Pg.175]

This reflects the relative ease with which the C—H bond in the alkane precursor will undergo homolytic fission, and more particularly, decreasing stabilisation, by hyperconjugation or other means, as the series is traversed. There will also be decreasing relief of strain (when R is large) on going from sp3 hybridised precursor to essentially sp2 hybridised radical, as the series is traversed. The relative difference in stability is, however, very much less than with the corresponding carbocations. [Pg.310]


See other pages where Hybridisation bonds is mentioned: [Pg.194]    [Pg.484]    [Pg.506]    [Pg.323]    [Pg.21]    [Pg.46]    [Pg.195]    [Pg.396]    [Pg.107]    [Pg.126]    [Pg.185]    [Pg.306]    [Pg.375]    [Pg.381]    [Pg.443]    [Pg.450]    [Pg.39]    [Pg.7]    [Pg.8]    [Pg.9]    [Pg.13]    [Pg.17]    [Pg.59]    [Pg.62]    [Pg.72]    [Pg.85]    [Pg.206]    [Pg.261]   
See also in sourсe #XX -- [ Pg.58 , Pg.59 , Pg.60 , Pg.61 , Pg.62 , Pg.63 , Pg.130 ]




SEARCH



Hybridisation

© 2024 chempedia.info