Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymerization, homogeneous catalysis

NEW PERSPECTIVES OF LANTHANIDES IN CATALYSIS 3. HOMOGENEOUS CATALYSIS. POLYMERIZATION... [Pg.393]

Metathesis is a catalyzed reaction that converts two olefin molecules into two different olefins. It is an important reaction for which many mechanistic approaches have been proposed by scientists working in the fields of homogenous catalysis and polymerization. One approach is the formation of a fluxional five-membered metallocycle. The intermediate can give back the starting material or the metathetic products via a concerted mechanism ... [Pg.246]

The study of catalytic polymerization of olefins performed up to the present time is certain to hold a particular influence over the progress of the concepts of the coordination mechanism of heterogeneous catalysis. With such an approach the elementary acts of catalytic reaction are considered to proceed in the coordination sphere of one ion of the transition element and, to a first approximation, the collective features of solids are not taken into account. It is not surprising that polymerization by Ziegler-Natta catalysts is often considered together with the processes of homogeneous catalysis. [Pg.213]

Much of the recent interest in insertion reactions undeniably stems from the emphasis placed on development of homogeneous catalysis as a rational discipline. One or more insertion is involved in such catalytic processes as the hydroformylation (31) or the polymerization of olefins 26, 75) and isocyanides 244). In addition, many insertion reactions have been successfully employed in organic and organometallic synthesis. The research in this general area has helped systematize a large body of previously unrelated facts and opened new areas of chemistry for investigation. Heck 114) and Lappert and Prokai 161) provide a comprehensive compilation and a systematic discussion of a wide variety of insertion reactions in two relatively recent (1965 and 1967) reviews. [Pg.90]

A final example of homogeneous catalysis is the use of metallocene catalyst systems in chain growth polymerization processes. The metallocene, which consists of a metal ion sandtviched between two unsaturated ring systems, is activated by a cocatalyst. The activated catalyst complexes with the monomer thereby reducing the reaction s energy of activation. This increases the rate of the reaction by up to three orders of magnitude. [Pg.87]

The only ceramic membranes of which results are published, are tubular microporous silica membranes provided by ECN (Petten, The Netherlands).[10] The membrane consists of several support layers of a- and y-alumina, and the selective top layer at the outer wall of the tube is made of amorphous silica (Figure 4.10).[24] The pore size lies between 0.5 and 0.8 nm. The membranes were used in homogeneous catalysis in supercritical carbon dioxide (see paragraph 4.6.1). No details about solvent and temperature influences are given but it is expected that these are less important than in the case of polymeric membranes. [Pg.80]

Nickel is frequently used in industrial homogeneous catalysis. Many carbon-carbon bond-formation reactions can be carried out with high selectivity when catalyzed by organonickel complexes. Such reactions include linear and cyclic oligomerization and polymerization reactions of monoenes and dienes, and hydrocyanation reactions [1], Many of the complexes that are active catalysts for oligomerization and isomerization reactions are supposed also to be active as hydrogenation catalysts. [Pg.96]

It is in the very nature of the catalytic process that the intermediate compound formed between catalyst and reactant is of extreme lability therefore not many cases are on record where the isolation by chemical means, or identification by physical methods, of intermediate compounds has been achieved concomitant with the evidence that these compounds are true intermediaries and not products of side reactions or artifacts. The formation of ethyl sulfuric acid in ether formation, catalyzed by HjSO , and of alkyl phosphates in olefin polymerization, catalyzed by liquid phosphoric acid, are examples of established intermediate compound formation in homogeneous catalysis. With regard to heterogeneous catalysis, where catalyst and reactant are not in the same... [Pg.65]

Multiphase homogeneous catalysis (continued) hydroformylation, 42 483-487, 498 hydrogenations, 42 488-491 metal salts as catalysis, 42 482-487 neutral ligands, 42 481 82 organic reactions, 42 495 0X0 synthesis, 42 483-487 ring-opening metathesis polymerization and isomerization, 42 492-494 telomerizations, 42 491-492 diols as catalyst phase, 42 496 fluorinated compounds as catalyst phase, 42 497... [Pg.151]

Ultrafiltration has been used for the separation of dendritic polymeric supports in multi-step syntheses as well as for the separation of dendritic polymer-sup-ported reagents [4, 21]. However, this technique has most frequently been employed for the separation of polymer-supported catalysts (see Section 7.5) [18]. In the latter case, continuous flow UF-systems, so-called membrane reactors, were used for homogeneous catalysis, with catalysts complexed to dendritic ligands [23-27]. A critical issue for dendritic catalysts is the retention of the catalyst by the membrane (Fig. 7.2b, see also Section 7.5). [Pg.310]

Homogeneous catalysis with a dendrimer supported catalyst was introduced by van Koten et al. in 1994 [68] and since then has rapidly expanded [5, 64—67]. The advantage of dendrimers over linear or irregular polymeric supports is their well-... [Pg.331]

Seen the list of demonstrated applications, numerous possibilities exist for the integration of homogeneous catalysis and a membrane separation. A complicating factor, however, is the relatively limited availability of solvent-resistant membranes. This will require a substantial development effort to obtain more solvent-stable membranes, including both polymeric and inorganic ones. [Pg.530]

Lanthanide-based catalysts, despite finding a lot of application in homogeneous catalysis, can be rather problematic due to the lability of some ligand types and the versatility of their coordination chemistry in the -1-3 oxidation state this makes the controlled synthesis of single-site Ln complexes a quite ambitious goal [92]. McLain and coworkers first demonstrated the high potential of a homoleptic yttrium complex Y(OCH2CH2NMe2)3 as ROP catalyst for the preparation of PLA from rac-lactide and that it promotes a rapid and controlled polymerization... [Pg.248]

The coordinative polymerization with soluble transition metal systems is part of the growing field of homogeneous catalysis on transition metal centers (Oxo-Process, Wacker-Process, Isomerization, Cyclooligomerization of olefis, etc.). The mechanisms of these reactions have not yet been completely elucidated. Any new knowledge could perhaps contribute to the detection of common trends and parallels, and would thus facilitate prediction and development of new processes. [Pg.469]

In spite of some declining industrial interest, the last 5 years have seen an unusual academic interest in the catalytic properties of the metal carbonyls. This has been part of a wider surge of interest in the organometallic chemistry of the transition metals and its application to homogeneous catalysis. Reactions such as Ziegler polymerization, the Oxo reaction, and the Wacker process are but a few of the many reactions of unsaturated molecules catalyzed in the coordination sphere of transition metal complexes (20). These coordination catalyses have much in common, and the study of one is often pertinent to the study of the others. [Pg.120]

The symmetry of the ligand can influence the product stereoselectivity and enantio-selectivity. Enantiomerically pure chemicals are extremely important for the agrochemical, pharmaceutical, and food industries. Many of the bidentate ligands used in these processes feature C2-type symmetry, dividing the space around the metal center into two empty quadrants and two full quadrants (see Section 3.1.3 on asymmetric homogeneous catalysis) [61,62], Ligand symmetry is also important in polymerization catalysis [63], where it can influence the polymer s tacticity (Figure 3.22). [Pg.92]

Keywords Homogeneous Catalysis Quantum Mechanics/Molecular Mechanics Polymerization Hydrogenation Dihydroxylation... [Pg.117]


See other pages where Polymerization, homogeneous catalysis is mentioned: [Pg.487]    [Pg.112]    [Pg.177]    [Pg.181]    [Pg.83]    [Pg.113]    [Pg.1444]    [Pg.485]    [Pg.13]    [Pg.15]    [Pg.527]    [Pg.207]    [Pg.331]    [Pg.17]    [Pg.504]    [Pg.165]    [Pg.201]    [Pg.79]    [Pg.27]    [Pg.405]    [Pg.196]    [Pg.8]    [Pg.51]    [Pg.12]    [Pg.29]    [Pg.29]    [Pg.487]    [Pg.119]   
See also in sourсe #XX -- [ Pg.459 , Pg.467 , Pg.468 , Pg.469 , Pg.470 , Pg.471 ]




SEARCH



Homogeneous asymmetric catalysis polymeric catalysts

Homogeneous catalysis

Homogeneous catalysis alkene polymerization

Homogeneous catalysis stereoselective polymerization

Homogeneous catalytic kinetics polymerization catalysis

Homogenous catalysis

Polymeric Supports in Homogeneous Catalysis

Polymerization catalysi

Polymerization catalysis

Polymerization homogeneous

© 2024 chempedia.info