Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

HMG-CoA-synthase

The ketone bodies (acetoacetate, 3-hydroxybutyrate, and acetone) are formed in hepatic mitochondria when there is a high rate of fatty acid oxidation. The pathway of ketogenesis involves synthesis and breakdown of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) by two key enzymes, HMG-CoA synthase and HMG-GoA lyase. [Pg.189]

LDL (apo B-lOO, E) receptors occur on the cell surface in pits that are coated on the cytosolic side of the cell membrane with a protein called clathrin. The glycoprotein receptor spans the membrane, the B-lOO binding region being at the exposed amino terminal end. After binding, LDL is taken up intact by endocytosis. The apoprotein and cholesteryl ester are then hydrolyzed in the lysosomes, and cholesterol is translocated into the cell. The receptors are recycled to the cell surface. This influx of cholesterol inhibits in a coordinated manner HMG-CoA synthase, HMG-CoA reductase, and, therefore, cholesterol synthesis stimulates ACAT activ-... [Pg.223]

Evidence for de novo synthesis of pheromone components was obtained by showing that labeled acetate and mevalonate were incorporated into ipsdienol by male Ips pini [103,104]. Similarly, labeled acetate and other labeled intermediates were shown to be incorporated into frontalin in a number of Dendroctonus species [105]. Possible precursors to frontalin include 6-methyl-6-hep-ten-2-one, which was incorporated into frontalin by D. ruffipennis [106]. The precursor 6-methyl-6-hepten-2-one also was shown to be converted to bre-vicomin in the bark beetle, Dendroctonus ponderosae [107]. In addition, the expression patterns of HMG-CoA reductase and HMG-CoA synthase are tightly correlated with frontalin production in Dendroctonus jeffreyi [108, 109]. A geranyl diphosphate synthase cDNA from I. pini was also isolated, functionally expressed, and modeled [110]. These data indicate that the de novo isoprenoid biosynthetic pathway is present in bark beetles. A variety of other monoterpene alcohols such as myrcenol, pityol, and sulcitol are probably synthesized through similar pathways [111]... [Pg.116]

Ketogenesis occurs in mitochondria of hepatocytes when excess acetyl CoA accumulates in the fasting state. HMG CoA synthase forms HMG-CoA, and HMG-CoA lyase breaks HMG-CoA into acetoacetate, which can subsequently be reduced to 3-hydroxybutyrate. Acetone is a minor side product formed nonenzymatically but is not used as a fuel in tissues. It does, however, impart a strong odor (sweet or fruity) to the breath, which is almost diagnostic for ketoacidosis. [Pg.230]

There is a marked increase in the activity of the key enzymes that convert fatty acids into ketone bodies carnitine palmitoyltransferase and HMG-CoA synthase. [Pg.145]

HMG-CoA synthase is not snccinylated, i.e. the interconversion cycle involving snccinylation does not occur (Appendix 7.5). [Pg.145]

Figure 22.10 Reverse cholesterol transfer. High density lipoprotein (HDL) collects cholesterol from cells in various tissues/ organs the complex is then transported in the blood to the liver where it binds to a receptor on the hepatocyte, is internalised and the cholesterolis released into the hepatocyte. This increases the concentration in the liver cells which then decreases the synthesis of cholesterol by inhibition of the rate-limiting enzyme in cholesterol synthesis, HMG-CoA synthase. The cholesterol is also secreted into the bile or converted to bile acids which are also secreted into the bile, some of which is lost in the faeces (Chapter A). Figure 22.10 Reverse cholesterol transfer. High density lipoprotein (HDL) collects cholesterol from cells in various tissues/ organs the complex is then transported in the blood to the liver where it binds to a receptor on the hepatocyte, is internalised and the cholesterolis released into the hepatocyte. This increases the concentration in the liver cells which then decreases the synthesis of cholesterol by inhibition of the rate-limiting enzyme in cholesterol synthesis, HMG-CoA synthase. The cholesterol is also secreted into the bile or converted to bile acids which are also secreted into the bile, some of which is lost in the faeces (Chapter A).
Synthesis of hydroxymethylglutaryl CoA (HMG CoA) by condensation of acetoacetyl CoA with acetyl CoA is catalyzed by HMG CoA synthase and is the rate-limiting step of the pathway. [Pg.114]

Stage Synthesis of Mevalonate from Acetate The first stage in cholesterol biosynthesis leads to the intermediate mevalonate (Fig. 21-34). Two molecules of acetyl-CoA condense to form acetoacetyl-CoA, which condenses with a third molecule of acetyl-CoA to yield the six-carbon compound /3-hydroxy-/3-methylglu-taryl-CoA (HMG-CoA). These first two reactions are catalyzed by thiolase and HMG-CoA synthase, respectively. The cytosolic HMG-CoA synthase in this pathway is distinct from the mitochondrial isozyme that catalyzes HMG-CoA synthesis in ketone body formation (see Fig. 17-18). [Pg.817]

The first two reactions in the cholesterol synthetic pathway are siri lar to those in the pathway that produces ketone bodies (see Figure 16.22, p. 194). They result in the production of 3-hydroxy-3-methyl-glutaryl CoA (HMG CoA, Figure 18.3). First, two acetyl CtA molecules condense to form acetoacetyl CoA. Next, a third molecule of acetyl CoA is added, producing HMG CoA, a six-carbon compound. [Note Liver parenchymal cells contain two isoenzymes of HMG CoA synthase. The cytosolic enzyme participates in cholesterol synthesis, whereas the mitochondrial enzyme Urc tions in the pathway for ketone body synthesis.]... [Pg.218]

The terpenes, carotenoids, steroids, and many other compounds arise in a direct way from the prenyl group of isopentenyl diphosphate (Fig. 22-1).16a Biosynthesis of this five-carbon branched unit from mevalonate has been discussed previously (Chapter 17, Fig. 17-19) and is briefly recapitulated in Fig. 22-1. Distinct isoenzymes of 3-hydroxy-3-methylglutaryl-CoA synthase (HMG-CoA synthase) in the liver produce HMG-CoA destined for formation of ketone bodies (Eq. 17-5) or mevalonate.7 8 A similar cytosolic enzyme is active in plants which, collectively, make more than 30,000 different isoprenoid compounds.910 However, many of these are formed by an alternative pathway that does not utilize mevalonate but starts with a thiamin diphosphate-dependent condensation of glyceraldehyde 3-phosphate with pyruvate (Figs. 22-1,22-2). [Pg.1227]

The sequence of cholesterol biosynthesis begins with a condensation in the cytosol of two molecules of acetyl-CoA in a reaction catalyzed by thiolase (fig. 20.3). The next step requires the enzyme /3-hydroxy-/3-methylglutaryl-CoA (HMG-CoA) synthase. This enzyme catalyzes the condensation of a third acetyl-CoA with /3-ketobutyryl-CoA to yield HMG-CoA. HMG-CoA is then reduced to mevalonate by HMG-CoA reductase. The activity of this reductase is primarily responsible for control of the rate of cholesterol biosynthesis. [Pg.461]

The thiolase and HMG-CoA synthase exhibit some regulatory properties in rat liver (cholesterol feeding causes a decrease in these enzyme activities in the cytosol but not in the mitochondria). However, the primary regulation of cholesterol biosynthesis appears to be centered on the HMG-CoA reductase reaction. HMG-CoA reductase is found on the endoplasmic reticulum, has a molecular weight of 97,092, and consists of 887 amino acids in a single polypeptide chain. The sequence of the enzyme was deduced by Michael Brown and Joseph Goldstein from the sequence of a piece of complimentary DNA (cDNA) derived from mRNA that codes for the reductase. The enzyme... [Pg.462]


See other pages where HMG-CoA-synthase is mentioned: [Pg.833]    [Pg.833]    [Pg.597]    [Pg.219]    [Pg.235]    [Pg.274]    [Pg.116]    [Pg.125]    [Pg.108]    [Pg.106]    [Pg.864]    [Pg.121]    [Pg.190]    [Pg.191]    [Pg.192]    [Pg.219]    [Pg.526]    [Pg.139]    [Pg.139]    [Pg.112]    [Pg.121]    [Pg.484]    [Pg.829]    [Pg.194]    [Pg.218]    [Pg.946]    [Pg.418]    [Pg.418]    [Pg.419]    [Pg.462]    [Pg.462]    [Pg.344]    [Pg.345]    [Pg.363]    [Pg.156]   
See also in sourсe #XX -- [ Pg.312 , Pg.313 , Pg.428 ]

See also in sourсe #XX -- [ Pg.415 ]

See also in sourсe #XX -- [ Pg.386 , Pg.404 ]

See also in sourсe #XX -- [ Pg.109 ]




SEARCH



HMG-CoA

© 2024 chempedia.info