Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heterogeneous catalysts, defined

In comparison to heterogeneous catalyzed reactions, homogeneous catalysis offers several important advantages. The catalyst complex is usually well defined and can be rationally optimized by ligand modification. Every metal center can be active in the reaction. The reaction conditions are usually much milder (T usually < 200 °C), and selectivities are often much higher than with heterogeneous catalysts. [Pg.218]

The ability to produce threads, discs and spheres of defined size and structure will be of great importance when the very promising initial results from catalytic studies are applied on a larger scale. Processes using heterogeneous catalysts require the ability to control particle size and shape in order to ensure good mixing of all the reaction components, and separations after reaction. [Pg.73]

This approach has allowed molecularly defined heterogeneous catalysts to be developed. It is the first step towards the development of rationally designed heterogeneous catalysts. While the performance of these catalysts are already... [Pg.184]

Finally, a second area of research for nanoparticles is their immobihza-tion on various supports. The deposition of well-defined nanoparticles on a support by different methods should advantageously replace traditional heterogeneous catalysts in terms of activity and selectivity. [Pg.277]

In the present chapter, we focus on the catalyst nature in solution using well-defined metal NPs as catal 4 ic precursors it means, soluble (or dispersible) heterogeneous pre-catalysts, as stated by Finke [6]. Some experiments described in the literature concerning the distinction between homogeneous and heterogeneous catalysts are discussed (see Section 3), followed by a particular case studied by us with regard to the catalyst nature in the allylic alkylation reaction, using preformed palladium NPs as catalytic precursors (see Section 4). [Pg.427]

It is well known that Rh(I) complexes can catalyze the carbonylation of methanol. A heterogenized catalyst was prepared by ion exchange of zeolite X or Y with Rh cations.126 The same catalytic cycle takes place in zeolites and in solution because the activation energy is nearly the same. The specific activity in zeolites, however, is less by an order of magnitude, suggesting that the Rh sites in the zeolite are not uniformly accessible. The oxidation of camphene was performed over zeolites exchanged with different metals (Mn, Co, Cu, Ni, and Zn).127 Cu-loaded zeolites have attracted considerable attention because of their unique properties applied in catalytic redox reactions.128-130 Four different Cu sites with defined coordinations have been found.131 It was found that the zeolitic media affects strongly the catalytic activity of the Cd2+ ion sites in Cd zeolites used to catalyze the hydration of acetylene.132... [Pg.257]

The Fischer-Tropsch synthesis, which may be broadly defined as the reductive polymerization of carbon monoxide, can be schematically represented as shown in Eq. (1). The CHO products in Eq. (1) are any organic molecules containing carbon, hydrogen, and oxygen which are stable under the reaction conditions employed in the synthesis. With most heterogeneous catalysts the primary products of the reaction are straight-chain alkanes, while the secondary products include branched-chain hydrocarbons, alkenes, alcohols, aldehydes, and carboxylic acids. The distribution of the various products depends on both the type of catalyst and the reaction conditions employed (4). [Pg.62]

Various works has pointed out the role of the nanostructure of the catalysts in their design.18-26 There is a general agreement that the nanostructure of the oxide particles is a key to control the reactivity and selectivity. Several papers have discussed the features and properties of nanostructured catalysts and oxides,27-41 but often the concept of nanostructure is not clearly defined. A heterogeneous catalyst should be optimized on a multiscale level, e.g. from the molecular level to the nano, micro- and meso-scale level.42 Therefore, not only the active site itself (molecular level) is relevant, but also the environment around the active site which orients or assist the coordination of the reactants, may induce sterical constrains on the transition state, and affect the short-range transport effects (nano-scale level).42 The catalytic surface process is in series with the transport of the reactants and the back-diffusion of the products which should be concerted with the catalytic transformation. Heat... [Pg.365]

Pores are found in many solids and the term porosity is often used quite arbitrarily to describe many different properties of such materials. Occasionally, it is used to indicate the mere presence of pores in a material, sometimes as a measure for the size of the pores, and often as a measure for the amount of pores present in a material. The latter is closest to its physical definition. The porosity of a material is defined as the ratio between the pore volume of a particle and its total volume (pore volume + volume of solid) [1]. A certain porosity is a common feature of most heterogeneous catalysts. The pores are either formed by voids between small aggregated particles (textural porosity) or they are intrinsic structural features of the materials (structural porosity). According to the IUPAC notation, porous materials are classified with respect to their sizes into three groups microporous, mesoporous, and macroporous materials [2], Microporous materials have pores with diameters < 2 nm, mesoporous materials have pore diameters between 2 and 50 nm, and macroporous materials have pore diameters > 50 nm. Nowadays, some authors use the term nanoporosity which, however, has no clear definition but is typically used in combination with nanotechnology and nanochemistry for materials with pore sizes in the nanometer range, i.e., 0.1 to 100 nm. Nanoporous could thus mean everything from microporous to macroporous. [Pg.96]

Note also that, in contrast to classical heterogeneous catalysts, the initiation step of [=SiORe(=CtBu)(=CHtBu)(CH2tBu)] is well defined and corresponds to the cross-metathesis of the alkene with the neopentyhdene ligand. In fact, in the metathesis of propene, 0.7 equiv of a 3 1 mixture of 3,3-dimethyl-l-butene and 4,4-dimethyl-2-pentene is formed (Figure 3.27) the nearly quantitative formation of cross-metathesis products is consistent with a real single-site catalyst. Moreover,... [Pg.111]

Within a discussion of nanostructured catalysts, mention must be made of zeolitic systems. Zeolites are a broad family of natural and synthetic aluminosiU-cates that exhibit two important properties that makes them ideal for consideration as heterogeneous catalysts they are crystalline and porous. Crystallinity brings with it precise definition at the atomic scale that is absent with amorphous or polycrystaUine metal oxides. The combination of a well-defined structure and... [Pg.143]

Scheme 9 Styrene CM using ill-defined, heterogeneous catalysts. Scheme 9 Styrene CM using ill-defined, heterogeneous catalysts.

See other pages where Heterogeneous catalysts, defined is mentioned: [Pg.193]    [Pg.73]    [Pg.71]    [Pg.109]    [Pg.117]    [Pg.118]    [Pg.152]    [Pg.152]    [Pg.170]    [Pg.173]    [Pg.276]    [Pg.299]    [Pg.427]    [Pg.110]    [Pg.597]    [Pg.303]    [Pg.199]    [Pg.342]    [Pg.451]    [Pg.271]    [Pg.485]    [Pg.397]    [Pg.136]    [Pg.13]    [Pg.25]    [Pg.36]    [Pg.139]    [Pg.144]    [Pg.159]    [Pg.455]    [Pg.718]    [Pg.313]    [Pg.418]    [Pg.82]    [Pg.138]    [Pg.14]    [Pg.234]   
See also in sourсe #XX -- [ Pg.39 ]




SEARCH



Catalysts defined

Catalysts heterogeneity

Catalysts heterogeneous

Catalysts heterogenous

Heterogeneity defined

Heterogenized catalysts

© 2024 chempedia.info