Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heterogeneous catalyst zeolites

As for other recyclable heterogeneous catalysts, zeolites and related materials can also contribute to the development of environmentally friendly processes in the synthesis of bulk and fine chemicals. The concept of a biomass refinery, capable of separating, modifying and exploiting the numerous constituents of renewable resources, is gaining worldwide acceptance today with a very broad outlook. This chapter has attempted to show that this particular area of carbohydrate chemistry is in itself very rich, both in already acquired knowledge and potential future developments. [Pg.154]

Friedel-Crafts reactions Replacement of stoichiometric quantities of Lewis acids (AICI3, FeCls, BF3, ZnCh, TiClJ or Bronsted acids (F13P04, HF) by heterogeneous catalysts (zeolites, ion exchangers, heteropolyacids, etc.). [Pg.369]

The vapor-phase Badger process (Eigure 10-2), which has been commercialized since 1980, can accept dilute ethylene streams such as those produced from ECC off gas. A zeolite type heterogeneous catalyst is used in a fixed bed process. The reaction conditions are 420°C and 200-300 psi. Over 98% yield is obtained at 90% conversion." Polyethylbenzene (polyalkylated) and unreacted benzene are recycled and join the fresh feed to the reactor. The reactor effluent is fed to the benzene fractionation system to recover unreacted benzene. The bottoms... [Pg.265]

Microporous catalysts are heterogeneous catalysts used in catalytic converters and for many other specialized applications, because of their very large surface areas and reaction specificity. Zeolites, for example, are microporous aluminosilicates (see Section 14.19) with three-dimensional structures riddled with hexagonal channels connected by tunnels (Fig. 13.38). The enclosed nature of the active sites in zeolites gives them a special advantage over other heterogeneous catalysts, because an intermediate can be held in place inside the channels until the products form. Moreover, the channels allow products to grow only to a particular size. [Pg.687]

Sulfur is widely distributed as sulfide ores, which include galena, PbS cinnabar, HgS iron pyrite, FeS, and sphalerite, ZnS (Fig. 15.11). Because these ores are so common, sulfur is a by-product of the extraction of a number of metals, especially copper. Sulfur is also found as deposits of the native element (called brimstone), which are formed by bacterial action on H,S. The low melting point of sulfur (115°C) is utilized in the Frasch process, in which superheated water is used to melt solid sulfur underground and compressed air pushes the resulting slurry to the surface. Sulfur is also commonly found in petroleum, and extracting it chemically has been made inexpensive and safe by the use of heterogeneous catalysts, particularly zeolites (see Section 13.14). One method used to remove sulfur in the form of H2S from petroleum and natural gas is the Claus process, in which some of the H2S is first oxidized to sulfur dioxide ... [Pg.754]

Proceedings of the 2" International FEZA (Federation of the European Zeolite Associations) Conference, Taormina, Italy, September 1-5, 2002 edited by R. Aiello, G. Giordano and F.Testa Volume 143 Scientific Bases for the Preparation of Heterogeneous Catalysts... [Pg.895]

An alternative that has received a great deal of attention in recent years is the immobilisation of a chiral catalyst on a nonsoluble support (polystyrene resins, silica gel, zeolites, etc.), thereby creating a chiral heterogeneous catalyst. Unlike homogeneous catalysts, these supported complexes can be recovered from the... [Pg.302]

This is a quite remarkable result, as the chemoselective hydrogenation of geraniol over a heterogeneous catalyst has rarely been reported. It can be carried out over platinum containing zeolite (9), over Pt/Al203 modified with carboxylic acids (10), over Ni/diatomaceous earth and alkali hydroxides or carbonates (11) or NiRaney and alkali or alkaline earth metal hydroxides (12), yields never exceeding 85%. [Pg.383]

It is well known that Rh(I) complexes can catalyze the carbonylation of methanol. A heterogenized catalyst was prepared by ion exchange of zeolite X or Y with Rh cations.126 The same catalytic cycle takes place in zeolites and in solution because the activation energy is nearly the same. The specific activity in zeolites, however, is less by an order of magnitude, suggesting that the Rh sites in the zeolite are not uniformly accessible. The oxidation of camphene was performed over zeolites exchanged with different metals (Mn, Co, Cu, Ni, and Zn).127 Cu-loaded zeolites have attracted considerable attention because of their unique properties applied in catalytic redox reactions.128-130 Four different Cu sites with defined coordinations have been found.131 It was found that the zeolitic media affects strongly the catalytic activity of the Cd2+ ion sites in Cd zeolites used to catalyze the hydration of acetylene.132... [Pg.257]

The induction of steric effects by the pore walls was first demonstrated with heterogeneous catalysts, prepared from metal carbonyl clusters such as Rh6(CO)16, Ru3(CO)12, or Ir4(CO)12, which were synthesized in situ after a cation exchange process under CO in the large pores of zeolites such as HY, NaY, or 13X.25,26 The zeolite-entrapped carbonyl clusters are stable towards oxidation-reduction cycles this is in sharp contrast to the behavior of the same clusters supported on non-porous inorganic oxides. At high temperatures these metal carbonyl clusters aggregate to small metal particles, whose size is restricted by the dimensions of the zeolitic framework. Moreover, for a number of reactions, the size of the pores controls the size of the products formed thus a higher selectivity to the lower hydrocarbons has been reported for the Fischer Tropsch reaction. [Pg.448]

The effectiveness of zeolites in catalysis and separation can often be improved by the textural and chemical properties of the matrices in which they are imbedded. Chitosan gels issued from renewable resources are already used as supports for the preparation of heterogeneous catalysts in the form of colloids, flakes or gel beads [1, 2], In this study we present several methods for the incorporation of zeolites in chitosan matrices and characterize the synergic effect of the components on the properties of the composite. [Pg.389]

Rauter and her coauthors Xavier, Lucas, and Santos (Lisbon) present here a detailed overview of the potential for heterogeneous catalysts in useful synthetic transformations of carbohydrates. Such silicon-based catalysts as zeolites are easy to handle and recover, are nontoxic, and can offer interesting possibilities for exercising stereo- and regio-control in many established carbohydrate transformations. [Pg.2]

II. Zeolites, Clays, and Silica Gel as Heterogeneous Catalysts and Their Use in Organic Synthesis... [Pg.29]

Heterogeneous catalysts, particularly zeolites, have been found suitable for performing transformations of biomass carbohydrates for the production of fine and specialty chemicals.123 From these catalytic routes, the hydrolysis of abundant biomass saccharides, such as cellulose or sucrose, is of particular interest. The latter disaccharide constitutes one of the main renewable raw materials employed for the production of biobased products, notably food additives and pharmaceuticals.124 Hydrolysis of sucrose leads to a 1 1 mixture of glucose and fructose, termed invert sugar and, depending on the reaction conditions, the subsequent formation of 5-hydroxymethylfurfural (HMF) as a by-product resulting from dehydration of fructose. HMF is a versatile intermediate used in industry, and can be derivatized to yield a number of polymerizable furanoid monomers. In particular, HMF has been used in the manufacture of special phenolic resins.125... [Pg.69]

Corma and Renz6 developed an effective heterogeneous catalyst system. Incorporation of tin into a beta zeolite network (Sn-Beta) gave a catalyst that was used to convert citronellal 5 to racemic isopulegol (6, Equation (3)) with 85% diastereoselectivity. It was calculated that each metal site performed 11,500 reaction cycles. No leaching of the tin was detected. This catalyst system is advantageous over normal Lewis acids, since precautions against humidity are not required, and it is suitable for use in a fixed bed continuous reactor. [Pg.558]

Microporosity is a feature observed in many different materials (e g., activated carbons, aerogels, and xerogels). However, with regard to heterogeneous catalysis, zeolites are practically the only microporous catalysts used at present. The following chapter thus only addresses zeolites and their use in catalysis. [Pg.97]


See other pages where Heterogeneous catalyst zeolites is mentioned: [Pg.32]    [Pg.12]    [Pg.366]    [Pg.32]    [Pg.12]    [Pg.366]    [Pg.2789]    [Pg.2092]    [Pg.192]    [Pg.73]    [Pg.89]    [Pg.98]    [Pg.185]    [Pg.329]    [Pg.189]    [Pg.6]    [Pg.52]    [Pg.36]    [Pg.193]    [Pg.116]    [Pg.914]    [Pg.327]    [Pg.357]    [Pg.251]    [Pg.30]    [Pg.56]    [Pg.77]    [Pg.83]    [Pg.230]    [Pg.1427]    [Pg.1428]    [Pg.8]    [Pg.517]    [Pg.139]   
See also in sourсe #XX -- [ Pg.456 ]




SEARCH



Catalysts heterogeneity

Catalysts heterogeneous

Catalysts heterogenous

Catalysts zeolitic

Heterogeneous zeolites

Heterogenized catalysts

Zeolite catalyst

© 2024 chempedia.info