Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heterocyclic keto esters

In the presence of a double bond at a suitable position, the CO insertion is followed by alkene insertion. In the intramolecular reaction of 552, different products, 553 and 554, are obtained by the use of diflerent catalytic spe-cies[408,409]. Pd(dba)2 in the absence of Ph,P affords 554. PdCl2(Ph3P)3 affords the spiro p-keto ester 553. The carbonylation of o-methallylbenzyl chloride (555) produced the benzoannulated enol lactone 556 by CO, alkene. and CO insertions. In addition, the cyclobutanone derivative 558 was obtained as a byproduct via the cycloaddition of the ketene intermediate 557[4I0]. Another type of intramolecular enone formation is used for the formation of the heterocyclic compounds 559[4l I]. The carbonylation of the I-iodo-1,4-diene 560 produces the cyclopentenone 561 by CO. alkene. and CO insertions[409,4l2]. [Pg.204]

The most widely used method for the preparation of carboxylic acids is ester hydrolysis. The esters are generally prepared by heterocyclization (cf. Chapter II), the most useful and versatile of which is the Hantzsch s synthesis, that is the condensation of an halogenated a- or /3 keto ester with a thioamide (1-20). For example ethyl 4-thiazole carboxylate (3) was prepared by Jones et al. from ethyl a-bromoacetoacetate (1) and thioformamide (2) (1). Hydrolysis of the ester with potassium hydroxide gave the corresponding acid (4) after acidification (Scheme 1). [Pg.520]

Enolate anions of p-keto esters react with some fluoroolefms, initially by replacement of a vinylic fluorine atom, to give ultimately heterocyclic products [2S, 29] (equation 25). [Pg.452]

At the end of the nineteenth century, Claisen described the cyclization of P-keto esters with hydroxylamine to provide 3-hydroxyisoxazoles. Substituents Ri and R2 in the P-keto ester make it possible to introduce substituents in the 4- and 5-position of the heterocyclic ring. [Pg.220]

Hydrazinopyridazines such as hydralazine have a venerable history as anti hypertensive agents. It is of note that this biological activity is maintained in the face of major modifications in the heterocyclic nucleus. The key intermediate keto ester in principle can be obtained by alkylation of the anion of pi peri done 44 with ethyl bromo-acetate. The cyclic acylhydrazone formed on reaction with hydrazine (46) is then oxidized to give the aromatized compound 47. The hydroxyl group is then transformed to chloro by treatment with phosphorus oxychloride (48). Displacement of halogen with hydrazine leads to the formation of endralazine (49). ... [Pg.232]

The finding that the anthelmintic thiazoloimidazole levamisole showed immunoregulatory activity spurred further investigation of this heterocyclic system. Synthesis of a highly modified analogue starts by displacement of bromine in keto ester 149 by sulfur in substituted benzimidazole 148. Cyclization of the product (150), leads initially to the carbinol 151. Removal of the ester group by saponification in base followed by acid-catalyzed dehydration of the carbinol affords the immune regulator tilomisole (152) [28]. [Pg.217]

The y-keto nitriles shown in Table I were prepared by the cyanide-catalyzed procedure described here. This procedure is generally applicable to the synthesis of y-diketones, y-keto esters, and other y-keto nitriles. However, the addition of 2-furancarboxaldehyde is more difficult, and a somewhat modified procedure should be employed. Although the cyanide-catalyzed reaction is generally limited to aromatic and heterocyclic aldehydes, the addition of aliphatic aldehydes to various Michael acceptors may be accomplished in the presence of thioazolium ions, which are also effective catalysts for the additions. [Pg.165]

The recently reported (757) conversion of 5-pyrazolones directly to a,j8-acetylenic esters by treatment with TTN in methanol appears to be an example of thallation of a heterocyclic enamine the suggested mechanism involves initial electrophilic thallation of the 3-pyrazolin-5-one tautomer of the 5-pyrazolone to give an intermediate organothallium compound which undergoes a subsequent oxidation by a second equivalent of TTN to give a diazacyclopentadienone. Solvolysis by methanol, with concomitant elimination of nitrogen and thallium(I), yields the a,)S-acetylenic ester in excellent (78-95%) yield (Scheme 35). Since 5-pyrazolones may be prepared in quantitative yield by the reaction of /3-keto esters with hydrazine (168), this conversion represents in a formal sense the dehydration of /3-keto esters. In fact, the direct conversion of /3-keto esters to a,jS-acetylenic esters without isolation of the intermediate 5-pyrazolones can be achieved by treatment in methanol solution first with hydrazine and then with TTN. [Pg.200]

In recent years, extensive attention has been focused on finding cultured plant cells that can be used as catalysts for organic functional group transformations. A number of transformations employing freely suspended or immobilized plant cell cultures have been reported.24 For example, Akakabe et al.25 report that immobilized cells of Daucus carota from carrot can be used to reduce prochiral carbonyl substrates such as keto esters, aromatic ketones, and heterocyclic ketones to the corresponding secondary alcohols in ( -configuration with enantiomeric excess of 52-99% and chemical yields of 30 63%). [Pg.458]

Heterocycles.—The phosphonium salt (59) is an effective three-carbon synthon, as demonstrated by its reaction with enolates of /9-keto-esters (Scheme 20) to give cyclopentenyl sulphides via an intramolecular Wittig reaction.63 Ylides are also intermediates in the synthesis of dihydrofurans (60) from the cyclopropylphos-phonium salt (61) and sodium carboxylates (Scheme 21).64 Cumulated ylides are very useful for the synthesis of heterocyclic compounds, e.g. (62), from molecules which contain both an acidic Y—H bond and a carbonyl or nitroso-function, as shown in Scheme 22.65... [Pg.190]

Reactions of this type are of value in the synthesis of 1,2,4-triazepines fused to various heterocyclic ring systems. Reactants of type (464) combine with /3-keto esters to give products such as (465) (75JHC661, 1095, 79LA639). Similarly compounds of type (466) react with /3-halogenoacyl halides, /3-diketones and /3-keto esters to give a variety of triazepines and triazepinones, e.g. (467) (77AJC2053). [Pg.638]

Bicyclic keto esters can easily be prepared by a process called a,a -annulation.29 Thus, treatment of the enamine of cyclopentanone (64) with ethyl a-(bromomethyl)acrylate (98) affords, after work-up, the bicyclic keto ester (99) in 80% yield (equation IS).2911 The mechanism probably involves an initial Michael addition and elimination (or a simple Sn2 or Sn2 alkylation) followed by an intramolecular Michael addition of the less-substituted enamine on the acrylate unit. The use of the enamine of 4,4-bis(ethoxycarbonyl)cyclohexanone (100 equation 26) with (98) gives a 45% yield of the adaman-tanedione diester (101) (yield based on 100 70% when based on 98) via a,a -annulation followed by Dieckmann condensation.29 Enamines of heterocyclic ketones can also serve as the initial nucleophiles, e.g. (102) and (103) give (105) via (104), formed in situ, in 70% yield (Scheme 11 ).29>... [Pg.8]

The problems involved are exemplified here by Knorr s pyrrole synthesis (A. Gossauer, 1974). It has been known for almost a century that a-aminoketones (C2N components) react with 1,3-dioxo compounds (C2 components) to form pyrroles (C4N-heterocycles). A side-reaction is the cyclodimerization of the a-aminoketones to yield dihydropyrazines (C4Nj), but this can be minimized by keeping the concentration of the ar-aminoketone low relative to the 1,3-dioxo compound. The first step in Knorr s pyrrole synthesis is the formation of an imine. This depends critically on the pH of the solution. The nucleophilicity of the amine is lost on protonation, whereas the carbonyl groups are activated by protons. An optimum is found around pH 5, where yields of about 60% can be reached. At pH 4 or 6 the yield of the pyrrole may approach zero. The ester groups of /7-keto esters do not react with the amine under these conditions. If a more reactive 1,3-diketone is used, it has to be symmetrical, otherwise mixtures of two different imines are obtained. The imine formed rearranges to an enamine, which cyclizes and dehydrates to yield a 3-acylpyrrole as the normal Knorr product (A. Gossauer, 1974 G.W. Kenner, 1973 B). [Pg.150]

O-tethered P-keto esters, through the intermediacy of aiylidene keto esters, have been efficiently utilized for the construction of immobilized dihydropyridines. Ceric ammonium nitrate (CAN) oxidation to pyridines followed by acidolytic cleavage provides a facile entry into nicotinic acid derivatives 57 [42], A three-component Biginelli cyclization of ureas on resin with a solution mixture of aldehydes and P-keto esters provides dihydropyrimidines 58 in high yield and purity [43], Heterocycles such as dihydropyridines and pyrimidines have historically proven to be a rich source of antimicrobial, antitumor, antiviral, and cardiovascular agents. [Pg.87]


See other pages where Heterocyclic keto esters is mentioned: [Pg.712]    [Pg.528]    [Pg.712]    [Pg.528]    [Pg.150]    [Pg.257]    [Pg.76]    [Pg.82]    [Pg.210]    [Pg.78]    [Pg.1200]    [Pg.92]    [Pg.784]    [Pg.174]    [Pg.354]    [Pg.364]    [Pg.470]    [Pg.153]    [Pg.1558]    [Pg.1565]    [Pg.85]    [Pg.914]    [Pg.148]    [Pg.257]    [Pg.598]    [Pg.243]    [Pg.402]    [Pg.130]    [Pg.201]    [Pg.117]    [Pg.537]    [Pg.250]   
See also in sourсe #XX -- [ Pg.527 ]




SEARCH



3-Keto esters

Keto esters reaction with heterocycles

© 2024 chempedia.info