Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heterocyclic cyclizations

The radical-based strategy has invaded the field of A-containing heterocycles. Cyclizations mediated by silyl radicals have been introduced as the key step in the synthesis of alkaloids and pharmacologically active compounds, with many advantages both in terms of selectivity and bio-compatibility. Some of the most significant and innovative examples are described in this section. [Pg.161]

The INOC strategy has been further extended to include a smaller class of cyclizations known as the intramolecular nitrile oxide-heterocycle cyclizations (INHC) in which the alkene component is either a furan or pyrrole (indole) unit. Typically, the furan adducts are more stable whereas the pyrrole adducts fragment (see (272) -> (273) -> (274)) (Scheme 51) (91JOC896). While the synthetic... [Pg.83]

Heterocyclization. Cyclization of ally lie carbamates to oxazolidin-2-ones via oxidative radical cyclization. Hydrogen comes from THF. [Pg.236]

Heterocyclizations. Cyclization of 5-hydroxylated 3-en-l-ynes leads to furans, The analogous thiols afford thiophenes. In methanol and under a carbon monoxide atmosphere (CO/air = 9 l) 5-hydroxy-l-alkynes are transformed into 2( )-(methoxy-carbonyl)methylenetetrahydrofurans. ... [Pg.336]

Cyclocondensation of aromatic aldehydes with 10 and cyanoselenoacetamide in ethanol/ 4-methylmorpholine gave pyridinedicarbonitrile salts 47. Alkylation of 47 yielded pyridineselenones 48. 10 reacted with H2Se in the presence of triethylamine to yield pyridineselenone 49, which can be used to prepare a number of selenium heterocycles. Cyclization of 10 with a,j5-unsaturated carbonyl compounds usually yields 2-oxopyridine derivatives. So 2-oxonicotinonitriles and tetrahydropyridine-2-ones have been... [Pg.799]

These palladium intermediates can also be intercepted by carbonylative nucleophilic trapping (Scheme 6.13d). This approach has been apphed to a range of heterocyclic cyclizations, often in concert with alcohols to generate ester-substituted... [Pg.167]

Heterocyclization. Cyclization of aminoarenes or amino-heteroarenes, bearing an acetylenic moiety in the orf/io-position, into indoles or azaindoles can be promoted by copper iodide in DMF, and has been widely used in medicinal chemistry to generate pyrrole-containing heterocycles (eq 17).10 >109... [Pg.224]

The intramolecular reaction oF allcenes with various O and N functional groups offers useful synthetic methods for heterocycles[13,14,166]. The reaction of unsaturated carboxylic acids affords lactones by either exo- or endo-cyclization depending on the positions of the double bond. The reaction of sodium salts of the 3-alkenoic acid 143 and 4-alkenoic acid 144 with Li2PdCl4 affords mostly five-membcrcd lactones in 30-40% yields[167]. Both 5-hexe-noic acid (145) and 4-hexenoic acid (146) are converted to five- or six-mem-bered lactones depending on the solvents and bases[168]. Conjugated 2,4-pentadienoic acid (147) is cyclized with Li2PdCl4 to give 2-pyrone (148) in water[i69]. [Pg.41]

Pd-cataly2ed reactions of butadiene are different from those catalyzed by other transition metal complexes. Unlike Ni(0) catalysts, neither the well known cyclodimerization nor cyclotrimerization to form COD or CDT[1,2] takes place with Pd(0) catalysts. Pd(0) complexes catalyze two important reactions of conjugated dienes[3,4]. The first type is linear dimerization. The most characteristic and useful reaction of butadiene catalyzed by Pd(0) is dimerization with incorporation of nucleophiles. The bis-rr-allylpalladium complex 3 is believed to be an intermediate of 1,3,7-octatriene (7j and telomers 5 and 6[5,6]. The complex 3 is the resonance form of 2,5-divinylpalladacyclopentane (1) and pallada-3,7-cyclononadiene (2) formed by the oxidative cyclization of butadiene. The second reaction characteristic of Pd is the co-cyclization of butadiene with C = 0 bonds of aldehydes[7-9] and CO jlO] and C = N bonds of Schiff bases[ll] and isocyanate[12] to form the six-membered heterocyclic compounds 9 with two vinyl groups. The cyclization is explained by the insertion of these unsaturated bonds into the complex 1 to generate 8 and its reductive elimination to give 9. [Pg.423]

The synthesis of 9H-benzo[2,l-e]thiazolo-[2,3-c]-as-triazine (401) was achieved by oxydative cyclization of 2-imino-3-(o-aminophenyl)-4-phenyl-4-thiazoline (718, 719). This latter reacts also with paraformaldehyde in hot toluene yielding 3-phenyl-9H.10H-benzo[l,2-/]thiazolo-[2,3-d][l,3,5]triazepine (402) (720). This heterocyclic sytem is also formed when carboxylic acids replace paraformaldehyde (Scheme 230) (721). [Pg.129]

Condensa.tlon, This term covers all processes, not previously iacluded ia other process definitions, where water or hydrogen chloride is eliminated ia a reaction involving the combination of two or more molecules. The important condensation reactions are nitrogen and sulfur heterocycle formation, amide formation from acid chlorides, formation of substituted diphenyl amines, and misceUaneous cyclizations. [Pg.293]

Cyclization reactions effected by intramolecular attack of the heteroatom on a nitrile group provide a useful source of 2-amino heterocycles. Some illustrative examples are depicted in Scheme 16. [Pg.99]

Most ring syntheses of this type are of modern origin. The cobalt or rhodium carbonyl catalyzed hydrocarboxylation of unsaturated alcohols, amines or amides provides access to tetrahydrofuranones, pyrrolidones or succinimides, although appreciable amounts of the corresponding six-membered heterocycle may also be formed (Scheme 55a) (73JOM(47)28l). Hydrocarboxylation of 4-pentyn-2-ol with nickel carbonyl yields 3-methylenetetrahy-drofuranone (Scheme 55b). Carbonylation of Schiff bases yields 2-arylphthalimidines (Scheme 55c). The hydroformylation of o-nitrostyrene, subsequent reduction of the nitro group and cyclization leads to the formation of skatole (Scheme 55d) (81CC82). [Pg.120]

In comparison to N—S bond formation, O—N bond formation by essentially oxidative procedures has found few applications in the synthesis of five-membered heterocycles. The 1,2,4-oxadiazole system (278) was prepared by the action of sodium hypochlorite on A(-acylamidines (277) (76S268). The A -benzoylamidino compounds (279) were also converted into the 1,2,4-oxadiazoles (280) by the action of r-butyl hypochlorite followed by base. In both cyclizations A -chloro compounds are thought to be intermediates (76BCJ3607). [Pg.137]

The concept of a 1,5-dipolar cyclization gives rise to a general method for the synthesis of an appreciable number of heterocyclic systems. 1,5-Dipoles are derived from 1,3-dipoles by conjugation with different double bond systems, and it is possible to derive 98 theoretically possible 1,5-dipolar systems. The general expression for a 1,5-dipole and some possible combinations of double bond systems are shown in Scheme 14. [Pg.152]

Cyclization onto a heterocyclic ring also readily occurs, as when the 2-substituted pyridine (566) was treated with triethyl phosphite. In this case the pyrrolopyrazole (567) was obtained (79JOC622),... [Pg.164]

Another example of the analogy between pyrazole and chlorine is provided by the alkaline cleavage of l-(2,4-dinitrophenyl)pyrazoles. As occurs with l-chloro-2,4-dinitrobenzene, the phenyl substituent bond is broken with concomitant formation of 2,4-dinitrophenol and chlorine or pyrazole anions, respectively (66AHC(6)347). Heterocyclization of iV-arylpyrazoles involving a nitrene has already been discussed (Section 4.04.2.1.8(i)). Another example, related to the Pschorr reaction, is the photochemical cyclization of (515) to (516) (80CJC1880). An unusual transfer of chlorine to the side-chain of a pyrazole derivative was observed when the amine (517 X = H, Y = NH2) was diazotized in hydrochloric acid and subsequently treated with copper powder (72TL3637). The product (517 X = Cl, Y = H) was isolated. [Pg.268]

Large ring heterocyclic radicals are not particularly well known as a class. Their behavior often resembles that of their alicyclic counterparts, except for transannular reactions, such as the intramolecular cyclization of 1-azacyclononan-l-yl (Scheme 1) (72CJCH67). As is the case with alicyclic ethers, oxepane in the reaction with r-butoxy radical suffers abstraction of a hydrogen atom from the 2-position in the first reaction step (Scheme 2) (76TL439). [Pg.19]

The protonated azirine system has also been utilized for the synthesis of heterocyclic compounds (67JA44S6). Thus, treatment of (199) with anhydrous perchloric acid and acetone or acetonitrile gave the oxazolinium perchlorate (207) and the imidazolinium perchlorate (209), respectively. The mechanism of these reactions involves 1,3-bond cleavage of the protonated azirine and reaction with the carbonyl group (or nitrile) to produce a resonance-stabilized carbonium-oxonium ion (or carbonium-nitrilium ion), followed by attack of the nitrogen unshared pair jf electrons to complete the cyclization. [Pg.69]

Thiurets — see 1,2,4-Dithiazolidines, diimino-Thonzylamine antihistamine, 3, 153 Thorpe reaction benzothiophenes from, 4, 876 Thorpe-Ziegler cyclization, 2, 74 Three-membered heterocyclic compounds basicity, 7, 23... [Pg.896]

This procedure is representative of a new general method for the preparation of noncyclic acyloins by thiazol ium-catalyzed dimerization of aldehydes in the presence of weak bases (Table I). The advantages of this method over the classical reductive coupling of esters or the modern variation in which the intermediate enediolate is trapped by silylation, are the simplicity of the procedure, the inexpensive materials used, and the purity of the products obtained. For volatile aldehydes such as acetaldehyde and propionaldehyde the reaction Is conducted without solvent in a small, heated autoclave. With the exception of furoin the preparation of benzoins from aromatic aldehydes is best carried out with a different thiazolium catalyst bearing an N-methyl or N-ethyl substituent, instead of the N-benzyl group. Benzoins have usually been prepared by cyanide-catalyzed condensation of aromatic and heterocyclic aldehydes.Unsymnetrical acyloins may be obtained by thiazol1um-catalyzed cross-condensation of two different aldehydes. -1 The thiazolium ion-catalyzed cyclization of 1,5-dialdehydes to cyclic acyloins has been reported. [Pg.173]

Intramolecular cyclization in perfluoroaromanc systems proves useful for the synthesis of heterocyclic compounds [72] For example, the Fischer indole synthesis, which normally requires the presence of an ortho proton, occurs satisfactonly with an ortho fluonne in theperfluoronaphthalene senes [73] (equation 37)... [Pg.512]

The use of this cyclization in the synthesis of isooxapenams demonstrates its usefulness in forming oxygen heterocycles [100] (equation 51)... [Pg.960]


See other pages where Heterocyclic cyclizations is mentioned: [Pg.167]    [Pg.167]    [Pg.95]    [Pg.150]    [Pg.151]    [Pg.305]    [Pg.345]    [Pg.36]    [Pg.168]    [Pg.74]    [Pg.104]    [Pg.110]    [Pg.114]    [Pg.116]    [Pg.44]    [Pg.138]    [Pg.78]    [Pg.114]    [Pg.158]    [Pg.36]    [Pg.41]    [Pg.88]    [Pg.820]    [Pg.815]   
See also in sourсe #XX -- [ Pg.167 ]




SEARCH



Allenes, cyclization heterocycles

Cyclization heterocycles from

Cyclization reactions nitrogen heterocycles

Cyclizations nitrogen heterocycles

Cyclizations to 5-Membered Aromatic Heterocycles

Heterocycles cyclization after

Heterocycles intramolecular anionic cyclization

Heterocyclic Chemistry Other Cyclizations

Heterocyclic compounds anionic cyclization

Intramolecular cyclizations heterocycles from

Nucleophilic Cyclizations with Annulated Fluorinated Heterocyclic Rings

Prins cyclization heterocycles

Radical cyclization heterocycles

© 2024 chempedia.info