Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heterocycles with nucleophiles

The effects of substituent groups in the reactions of the cationic heterocycles with nucleophiles are entirely as expected. Appropriately situated substituent groups which can function as leaving groups can be displaced (e.g. equation 41), and ANRORC reactions are very common (e.g. equations 42 and 43). The latter type of reaction is of particular... [Pg.40]

Reactions of heterocycles with nucleophilic radicals The Minisci reaction" ... [Pg.23]

An interesting method for the substitution of a hydrogen atom in rr-electron deficient heterocycles was reported some years ago, in the possibility of homolytic aromatic displacement (74AHC(16)123). The nucleophilic character of radicals and the important role of polar factors in this type of substitution are the essentials for a successful reaction with six-membered nitrogen heterocycles in general. No paper has yet been published describing homolytic substitution reactions of pteridines with nucleophilic radicals such as alkyl, carbamoyl, a-oxyalkyl and a-A-alkyl radicals or with amino radical cations. [Pg.290]

Benzisoxazoles undergo electrophilic substitution in the benzo ring, but with nucleophiles the reaction occurs in the isoxazole moiety, often leading to salicylonitriles with 3-unsubstituted systems. The isomeric 2,1-benzisoxazoles are characterized by the ease with which they may be converted into other heterocyclic systems. [Pg.12]

From the preparative point of view, reactions of heterocyclic aromatic compounds with nucleophilic reagents are very important, especially the reactions of their quaternary salts containing a formal enamine grouping in the molecule. [Pg.294]

The reactivity of halogeno-substituted five-membered ring heterocycles with regard to nucleophilic attack is somewhat greater than that... [Pg.346]

Heterocyclic compounds may show a higher tendency than carbocycles to react with nucleophiles according to the addition-elimination mechanism than via arynes. [Pg.125]

Heterocyclic structures analogous to the intermediate complex result from azinium derivatives and amines, hydroxide or alkoxides, or Grignard reagents from quinazoline and orgahometallics, cyanide, bisulfite, etc. from various heterocycles with amide ion, metal hydrides,or lithium alkyls from A-acylazinium compounds and cyanide ion (Reissert compounds) many other examples are known. Factors favorable to nucleophilic addition rather than substitution reactions have been discussed by Albert, who has studied examples of easy covalent hydration of heterocycles. [Pg.171]

In work on 6-methoxypyrimidines (130), the 4-methylsulfonyl group was found to be displaced by the sulfanilamide anion more readily than were 4-chloro or trimethylammonio groups. This reactivity may be partly due to the nature of the nucleophile (106, Section II, D, 1). However, high reactivity of alkyl- and aryl-sulfonyl heterocycles with other nucleophiles has been observed. A 2-methylsulfonyl group on pyridine was displaced by methoxide ion with alkaline but not acidic methanol. 3,6-Bis(p-tolylsulfonyl)-pyridazine reacts (100°, 5 hr) with sulfanilamide anion and even the... [Pg.211]

Heminal-activated haloolefins with heterocyclic fragments in reactions with N-heterocycles as nucleophiles 98UK317. [Pg.221]

Attempts were made to perform heterocyclization with 4-phenylethynyl- and 4-ethynyl-5-aminomethyl-l,3-dimethylpyrazole where, on the one side, a strained six-membered ring can be formed, and, on the other side, the aliphatic amino group is more nucleophilic than the aromatic (Scheme 112). However, all attempts to cyclize the ethynylpyrazole and its phenyl analog failed (86TH1). [Pg.55]

Quinoxalines undergo facile addition reactions with nucleophilic reagents. The reaction of quinoxaline with allylmagnesium bromide gives, after hydrolysis of the initial adduct, 86% of 2,3-diallyl-l,2,3,4-tetrahydroquinoxaline. Quinoxaline is more reactive to this nucleophile than related aza-heterocyclic compounds, and the observed order of reactivity is pyridine < quinoline isoquinoline < phenan-thridine acridine < quinoxaline. ... [Pg.213]

The foregoing examples show that the nucleophilic attack to nitroarenes at theorr/io-posidcn followed by cyclizadon is a generid method for the synthesis of various heterocycles. When nucleophiles have an electrophilic center, heterocyclic compounds are obtained in one step. Ono and coworkers have used the anion dedved from ethyl isocyanoacetate as the reacdve anion for the preparadon of heterocyclic compounds. The carbanion reacts with various nitroarenes to give isoindoles or pyriirddines depending on the stnicture of nitroarenes fEqs. 9.56 and9.57. The synthesis of pyrroles is discussed in detail in Chapter 10. [Pg.319]

The 2-position is largely unreactive toward electrophiles, but nucleophilic substitution occurs there with some facility, especially in acidic medium. The protonated species is about 20 times more reactive than the neutral molecule (70BSF2705). Exhaustive chlorination in the presence of antimony trichloride gave pentachlorobenzothiazole (64GEP1168911). Direct chlorination of the parent heterocycle with aluminium or ferric... [Pg.275]

The reaction of A-acyliminium ions with nucleophilic carbon atoms (also called cationic x-amidoalkylation) is a highly useful method for the synthesis of both nitrogen heterocycles and open-chain nitrogen compounds. A variety of carbon nucleophiles can be used, such as aromatic compounds, alkcncs, alkyncs, carbcnoids, and carbanions derived from active methylene compounds and organometallics. [Pg.803]

A novel application of a phenyl aryldiazosulfone was found by Kessler et al. (1990). l-[4-(7V-Chlorocarbonyl-7V-methylamino)phenyl]-2-(phenylsulfonyl)diazene (6.18) is an acid chloride with a potential diazonio group. The above authors showed that in organic solvents (THF, etc.) this compound reacts easily, as expected, with nucleophiles (HNu), e.g., with aliphatic, aromatic, or heterocyclic amines, with cystine dimethyl ester, or with 4-methoxyphenol at the carbonyl function, yielding... [Pg.118]

Ruble JG, Fu GC (1996) Chiral tc-complexes of heterocycles with transition metals a versatile new family of nucleophilic catalysts. J Org Chem 61 7230-7231... [Pg.174]

The compounds referred to as azolides are heterocyclic amides in which the amide nitrogen is part of an azole ring, such as imidazole, pyrazole, triazole, tetrazole, benzimidazole, benzotriazole, and their substituted derivatives. In contrast to normal amides, most of which show particularly low reactivities in such nucleophilic reactions as hydrolysis, alcoholysis, aminolysis, etc., the azolides are characterized by high reactivities in reactions with nucleophiles within the carbonyl group placing these compounds at about the same reactivity level as the corresponding acid chlorides or anhydrides. 11... [Pg.14]

Nitroenamines and related compounds have been used for synthesis of a variety of heterocyclic compounds. Rajappahas summarized the chemistry of nitroenamines (see Section 4.2).140 Ariga and coworkers have developed the synthesis of heterocycles based on the reaction of nitropyridones or nitropyrimidinone with nucleophiles. For example, 2-substituted 3-nitro-pyridines are obtained by the reaction of l-methyl-3,5-dinitro-2-pyridones with ketones in the presence of ammonia (Eq. 10.82).141... [Pg.356]

In an earlier study the authors proposed a [3.2.0] bicyclic sulfonium salt 8 as the reactive intermediate in the trimethylsilyl iodide mediated ring contraction of 4-methoxythiephane <1996T5989>. Enantiomerically pure thio-lane derivatives were synthesized via a ring contraction of a seven-membered sulfur heterocycle by nucleophilic transannular substitution <2000TA1389>. The thiepane derivative 15, derived from d-sorbitol, was converted into the dimesyl derivative 16 following deprotection under acidic conditions. Treatment of 16 with sodium azide in DMSO at 120°C yielded the corresponding thiolane as a mixture of two diastereoisomers, 17a and 17b, in a 5 1 ratio (see Scheme 1). [Pg.483]


See other pages where Heterocycles with nucleophiles is mentioned: [Pg.211]    [Pg.211]    [Pg.26]    [Pg.12]    [Pg.211]    [Pg.211]    [Pg.26]    [Pg.12]    [Pg.99]    [Pg.142]    [Pg.25]    [Pg.527]    [Pg.549]    [Pg.635]    [Pg.735]    [Pg.544]    [Pg.299]    [Pg.155]    [Pg.469]    [Pg.15]    [Pg.357]    [Pg.282]    [Pg.207]    [Pg.1]    [Pg.149]    [Pg.523]    [Pg.1043]   
See also in sourсe #XX -- [ Pg.11 , Pg.354 ]




SEARCH



Acetylenecarboxylic esters, reactions with nitrogen-containing heterocycles through nucleophilic additions

Nucleophiles, reaction with aromatic heterocyclic bases

Nucleophilic Cyclizations with Annulated Fluorinated Heterocyclic Rings

Reactions of Heterocycles with Nucleophilic Radicals

© 2024 chempedia.info