Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Azoles aromaticity

In this initial section the reactivities of the major types of azole aromatic rings are briefly considered in comparison with those which would be expected on the basis of electronic theory, and the reactions of these heteroaromatic systems are compared among themselves and with similar reactions of aliphatic and benzenoid compounds. Later in this chapter all the reactions are reconsidered in more detail. It is postulated that the reactions of azoles can only be rationalized and understood with reference to the complex tautomeric and acid-base equilibria shown by these systems. Tautomeric equilibria are discussed in Chapter 4.01. Acid-base equilibria are considered in Section 4.02.1.3 of the present chapter. [Pg.41]

The a-metalation of azoles (aromatic nitrogen-containing five-mem-bered rings) is a much more facile process than that for the analogous saturated systems, and a small number of heterocycles containing free NH groups can undergo some direct lithiation, despite the ionization of the... [Pg.162]

When the nitrogen atom of the amide belongs to an azole (aromatic five-membered ring) the lone pair is less available to conjugate with the carbonyl group because it is part of the aromatic sextet [33], In some way the barrier in azolides (18) is an indirect measure of the aromaticity of the azole, or more precisely of the ability of the N1 lone pair to share its electrons. The calculated and experimental values of a series of barriers of azolides are reported in Table 1 [34],... [Pg.159]

Comparative studies have been undertaken between different heterocyclic series, especially the azoles, thiazoles. oxazoles. imidazoles, and selenazoles. In a large number of these studies, the heterocycles are condensed w ith aromatic nuclei. [Pg.272]

A large group of heterocyclic aromatic compounds are related to pyrrole by replacement of one of the ring carbons p to nitrogen by a second heteroatom Com pounds of this type are called azoles... [Pg.461]

Scheme 1 Neutral aromatic azoles (no exocyclic double bonds ) (Z = O, S or NR)... Scheme 1 Neutral aromatic azoles (no exocyclic double bonds ) (Z = O, S or NR)...
Proton chemical shifts and spin coupling constants for ring CH of fully aromatic neutral azoles are recorded in Tables 3-6. Vicinal CH—CH coupling constants are small where they have been measured (in rather few cases) they are found to be 1-2 Hz. [Pg.13]

Some available data on H NMR spectra of non-aromatic azoles containing two ring-double bonds are given in Table 10. Here there is no ring current effect and the chemical shifts are consequently more upheld. [Pg.14]

Chemical shifts for aromatic azoles are recorded in Tables 14-17. As for the proton spectra, fast tautomerism renders two of the chemical shifts equivalent for the NH derivatives (Table 14). However, data for the AT-methyl derivatives (Table 15) clearly indicate that the... [Pg.15]

Table 10 H NMR Spectral Data (5, p.p.m.) for Ring Hydrogens of Non-aromatic Azoles with Two Ring Double... Table 10 H NMR Spectral Data (5, p.p.m.) for Ring Hydrogens of Non-aromatic Azoles with Two Ring Double...
Azolinone derivatives and the corresponding thiones and imines are listed in Table 18 only substituted derivatives have been measured frequently. The chemical shifts of non-aromatic azole derivatives are given in Tables 19-21 relatively few data are available and these are generally for substituted derivatives rather than for the parent compounds. [Pg.16]

Table 11 H NMR Spectral Data for Ring Hydrogens of Azolines (Non-aromatic Azoles with One Ring Double Bond)... Table 11 H NMR Spectral Data for Ring Hydrogens of Azolines (Non-aromatic Azoles with One Ring Double Bond)...
Table 21 C NMR Chemical Shifts for Azolidines (Non-aromatic Azoles without Ring Double Bonds)... Table 21 C NMR Chemical Shifts for Azolidines (Non-aromatic Azoles without Ring Double Bonds)...
NMR data for 4-methyloxazole have been compared with those of 4-methylthiazole the data clearly show that the ring protons in each are shielded. In a comprehensive study of a range of oxazoles. Brown and Ghosh also reported NMR data but based a discussion of resonance stabilization on pK and UV spectral data (69JCS(B)270). The weak basicity of oxazole (pX a 0.8) relative to 1-methylimidazole (pK 7.44) and thiazole (pK 2.44) demonstrates that delocalization of the oxygen lone pair, which would have a base-strengthening effect on the nitrogen atom, is not extensive. It must be concluded that not only the experimental measurement but also the very definition of aromaticity in the azole series is as yet poorly quantified. Nevertheless, its importance in the interpretation of reactivity is enormous. [Pg.33]

The carbon atoms of azole rings can be attacked by nucleophilic (Section 4.02.1.6 electrophilic (Section 4.02.1.4) and free radical reagents (Section 4.02.1.8.2). Some system for example the thiazole, imidazole and pyrazole nuclei, show a high degree of aromati character and usually revert to type if the aromatic sextet is involved in a reaction. Othei such as the isoxazole and oxazole nuclei are less aromatic, and hence more prone to additio reactions. [Pg.42]

The distinction between these two classes of reactions is semantic for the five-membered rings Diels-Alder reaction at the F/B positions in (269) (four atom fragment) is equivalent to 1,3-dipolar cycloaddition in (270) across the three-atom fragment, both providing the 47t-electron component of the cycloaddition. Oxazoles and isoxazoles and their polyaza analogues show reduced aromatic character and will undergo many cycloadditions, whereas fully nitrogenous azoles such as pyrazoles and imidazoles do not, except in certain isolated cases. [Pg.75]

Discussion of these compounds is divided into isomers of aromatic compounds, and dihydro and tetrahydro derivatives. The isomers of aromatic azoles are a relatively little-studied class of compounds. Dihydro and tetrahydro derivatives with two heteroatoms are quite well-studied, but such compounds become more obscure and elusive as the number of heteroatoms increases. Thus dihydrotriazoles are rare dihydrotetrazoles and tetrahydro-triazoles and -tetrazoles are unknown unless they contain doubly bonded exocyclic substituents. [Pg.77]

Oxides of sulfur-containing azoles comprise another class of non-aromatic azoles. [Pg.77]

Some tetrahydro azoles can be aromatized, but this is more difficult than in the corresponding dihydro series. Thus the conversion of pyrazolidines into pyrazoles is accomplished with chloranil. Imidazolidines are aromatized with great difficulty. [Pg.80]

As discussed in Section 4.01.5.2, hydroxyl derivatives of azoles (e.g. 463, 465, 467) are tautomeric with either or both of (i) aromatic carbonyl forms (e.g. 464,468) (as in pyridones), and (ii) alternative non-aromatic carbonyl forms (e.g. 466, 469). In the hydroxy enolic form (e.g. 463, 465, 467) the reactivity of these compounds toward electrophilic reagents is greater than that of the parent heterocycles these are analogs of phenol. [Pg.98]

The pyrazole ring is particularly difficult to cleave and, amongst the azoles, pyrazoles together with the 1,2,4-triazoles are the most stable and easiest to work with. This qualitative description of pyrazole stability covers the neutral, anionic and cationic aromatic species. On the other hand, the saturated or partially saturated derivatives can be considered as hydrazine derivatives their ring opening reactions usually involve cleavage of the N—C bond and seldom cleavage of the N—N bond. It should be noted, however, that upon irradiation or electron impact the N—N bond of pyrazoles can be broken. [Pg.168]

Since aromaticity is, at best, a relative value, the problem of the aromaticity of pyrazole, compared to other azoles, is to be found in Section 4.01.1.2, in which the authoritative review by Cook et al. (74AHC(17)255) is summarized. [Pg.208]

C-Linked substituents behave in pyrazoles and indazoles as in other azoles (Section 4.02.3.3). The classical aromatic chemistry of these compounds has given rise to a great number of publications (66AHC(6)347, 67HC(22)1, B-76MI40402), but not to a specific pyrazole chemistry. For this reason, only a brief survey will be given here. [Pg.260]

Table 7 also indicates that the rate enhancements for a 3- and 5-methyl group vary significantly among 1,2-azoles. The difference between the increments in log units for a 3-and 5-methyl group, which should vary directly with bond fixation in the ground state, is larger for isoxazole (1.4) than for pyrazole (0.7) and for isothiazole (0.2). This indicates that the aromaticity increases in the same order and contributes the first quantitative evidence that the 1,2-azoles follow the same aromaticity order as furan < pyrrole < thiophene. [Pg.22]

Hydrazides of vicinal acetylene-substituted derivatives of benzoic and azole carboxylic acids are important intermediate compounds because they can be used for cyclization via both a- and /3-carbon atoms of a multiple bond involving both amine and amide nitrogen atoms (Scheme 131). Besides, the hydrazides of aromatic and heteroaromatic acids are convenient substrates for testing the proposed easy formation of a five-membered ring condensed with a benzene nucleus and the six-membered one condensed with five-membered azoles. [Pg.62]

The mechanisms of the electrophilic substitutions in the isoxazole nucleus have not yet been studied. They should not differ fundamentally from those usually accepted for the substitution of aromatic systems but the structural specificity of the isoxazole ring might give rise to some peculiarities, as recently specially discussed.One important point is that isoxazole shows a clearcut tendency to form coordination compounds. Just as pyridine and other azoles, isoxazoles coordinate with halogens and the salts of heavy metals, for example of cadmium,mercury,zinc. Such coordination... [Pg.389]

The diazotization of heteroaromatic amines is basically analogous to that of aromatic amines. Among the five-membered systems the amino-azoles (pyrroles, diazoles, triazoles, tetrazoles, oxazoles, isooxazoles, thia-, selena-, and dithiazoles) have all been diazotized. In general, diazotization in dilute mineral acid is possible, but diazotization in concentrated sulfuric acid (nitrosylsulfuric acid, see Sec. 2.2) or in organic solvents using an ester of nitrous acid (ethyl or isopentyl nitrite) is often preferable. Amino derivatives of aromatic heterocycles without ring nitrogen (furan and thiophene) can also be diazotized. [Pg.16]

If an aromatic o-diamine such as 1,2-diaminobenzene (2.24) is diazotized in dilute aqueous acid, the 2-aminobenzene-l-diazonium ion formed first (2.25) undergoes a rapid intramolecular N-azo coupling reaction to give 1,2,3-benzotri-azole (2.26). Both amino groups of 2.24 can, however, be diazotized in concentrated acid (Scheme 2-18), forming the bis-diazonium ion 2.27. 1,3- and 1,4-diamines must also be bisdiazotized in concentrated acids in order to avoid inter-molecular N- or C-coupling. [Pg.24]

Benzotriazole can exist in two tautomeric forms, l-//-benzotriazole (6.46, R = H) and 2-/f-benzotriazole. If the aromatic ring contains a substituent, the 1- and 3-nitrogen atoms of the triazole are not equivalent, and therefore a 3-//-benzotri-azole derivative can also exist. The equilibrium between the 1 -H and 2-H tautomers of benzotriazoles is strongly on the side of the 1 -H tautomer, in contrast to triazole where the 2-H tautomer is dominant. Tomas et al. (1989) compared experimental data (enthalpies of solution, vaporization, sublimation, and solvation in water, methanol, and dimethylsulfoxide) with the results of ab initio theoretical calculations at the 6-31G level. [Pg.132]


See other pages where Azoles aromaticity is mentioned: [Pg.240]    [Pg.240]    [Pg.2]    [Pg.2]    [Pg.2]    [Pg.41]    [Pg.42]    [Pg.62]    [Pg.190]    [Pg.851]    [Pg.185]    [Pg.365]    [Pg.226]   
See also in sourсe #XX -- [ Pg.125 ]




SEARCH



© 2024 chempedia.info