Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heck reaction catalyst

Pd nanopartides, formed via salt reduction with tetrabutyl ammonium carboxyl-ates were reported by Reetz as highly effident Heck reaction catalysts [114, 115]. [Pg.67]

One modification to the established route involved a reversal in the order of the SnAt reaction and the Heck reaction. This change would be expected to improve the purge of palladium in the process by moving the palladium-catalyzed step earlier in the overall sequence. This process is shown in Scheme 7. Toward this end, a screen of Heck reaction catalysts was performed. While desired product 24 could be accessed via this approach, the Heck reaction was not efficient under any of the conditions examined, and many conditions provided mixtures of regioisomeric Heck products. Additionally, the chloropyrimidine 21 was found to be reactive (SnAt) with a variety of solvents and/or bases in the reaction screen. For these reasons, this sequence of transformations was not investigated further. [Pg.178]

Some of the most stable NHC-Pd complexes reported to date feature a pincer type CNC or CCC ligands, where the two terminal ligands are NHCs (Figure 3.2). For example, complex 63 decomposed in refluxing A, A -dime-thylacetamide (DMA) (bp = 165 °C) depositing Pd black after 8 h, while 55 was unchanged after 24 h at this temperature. In Heck reactions catalyst 55 had no induction period and no loss of catalytic activity was found in the presence of metallic mercury. [Pg.99]

The best procedures for 3-vinylation or 3-arylation of the indole ring involve palladium intermediates. Vinylations can be done by Heck reactions starting with 3-halo or 3-sulfonyloxyindoles. Under the standard conditions the active catalyst is a Pd(0) species which reacts with the indole by oxidative addition. A major con.sideration is the stability of the 3-halo or 3-sulfonyloxyindoles and usually an EW substituent is required on nitrogen. The range of alkenes which have been used successfully is quite broad and includes examples with both ER and EW substituents. Examples are given in Table 11.3. An alkene which has received special attention is methyl a-acetamidoacrylate which is useful for introduction of the tryptophan side-chain. This reaction will be discussed further in Chapter 13. [Pg.109]

Pd-catalysts with heterocyclic ligands as catalysts for Heck reaction 98CSR427. [Pg.211]

Legros et al. (2001T2507) carried out the synthesis of acetylquinolines (e.g. 130) via Heck reaction of 3-bromoquinoline (70) and -butyl vinyl ether (Scheme 16) employing either Pd(dba)2 or Pd(OAc)a as the catalyst. In each case it was found that the Heck reaction for this synthesis gave better overall yields than using the Stille reaction (see Section IV.C). Another advantageous point in favor of the Heck is that it avoids the use of toxic stannane. [Pg.22]

For the performance of an enantioselective synthesis, it is of advantage when an asymmetric catalyst can be employed instead of a chiral reagent or auxiliary in stoichiometric amounts. The valuable enantiomerically pure substance is then required in small amounts only. For the Fleck reaction, catalytically active asymmetric substances have been developed. An illustrative example is the synthesis of the tricyclic compound 17, which represents a versatile synthetic intermediate for the synthesis of diterpenes. Instead of an aryl halide, a trifluoromethanesul-fonic acid arylester (ArOTf) 16 is used as the starting material. With the use of the / -enantiomer of 2,2 -Z7w-(diphenylphosphino)-l,F-binaphthyl ((R)-BINAP) as catalyst, the Heck reaction becomes regio- and face-selective. The reaction occurs preferentially at the trisubstituted double bond b, leading to the tricyclic product 17 with 95% ee. °... [Pg.157]

The original Sonogashira reaction uses copper(l) iodide as a co-catalyst, which converts the alkyne in situ into a copper acetylide. In a subsequent transmeta-lation reaction, the copper is replaced by the palladium complex. The reaction mechanism, with respect to the catalytic cycle, largely corresponds to the Heck reaction.Besides the usual aryl and vinyl halides, i.e. bromides and iodides, trifluoromethanesulfonates (triflates) may be employed. The Sonogashira reaction is well-suited for the synthesis of unsymmetrical bis-2xy ethynes, e.g. 23, which can be prepared as outlined in the following scheme, in a one-pot reaction by applying the so-called sila-Sonogashira reaction ... [Pg.158]

Palladium-catalyzed carbon-carbon bond forming reactions like the Suzuki reac-tion as well as the Heck reaction and the Stille reaction, have in recent years gained increased importance in synthetic organic chemistry. In case of the Suzuki reaction, an organoboron compound—usually a boronic acid—is reacted with an aryl (or alkenyl, or alkynyl) halide in the presence of a palladium catalyst. [Pg.272]

The Heck reaction and other related transformations for selective C-C couplings are receiving a great deal of attention among synthetic chemists, due to their versatility for fine chemical synthesis. However, these reactions suffer in many cases from the instability of the Pd-catalysts used, resulting in high catalyst consumption and difficult processing. [Pg.241]

Seddon s group described the option of carrying out Heck reactions in ionic liquids that do not completely mix with water. These authors studied different Heck reactions in the triphasic [BMIM][PFg]/water/hexane system [91]. While the [BMIM]2[PdCl4] catalyst used remains in the ionic liquid, the products dissolve in the organic layer, with the salt formed as a by-product of the reaction ([H-base]X) being extracted into the aqueous phase. [Pg.242]

Carbon-carbon bond formation reactions and the CH activation of methane are another example where NHC complexes have been used successfully in catalytic applications. Palladium-catalysed reactions include Heck-type reactions, especially the Mizoroki-Heck reaction itself [171-175], and various cross-coupling reactions [176-182]. They have also been found useful for related reactions like the Sonogashira coupling [183-185] or the Buchwald-Hartwig amination [186-189]. The reactions are similar concerning the first step of the catalytic cycle, the oxidative addition of aryl halides to palladium(O) species. This is facilitated by electron-donating substituents and therefore the development of highly active catalysts has focussed on NHC complexes. [Pg.14]

Palladium(II) complexes provide convenient access into this class of catalysts. Some examples of complexes which have been found to be successful catalysts are shown in Scheme 11. They were able to get reasonable turnover numbers in the Heck reaction of aryl bromides and even aryl chlorides [22,190-195]. Mechanistic studies concentrated on the Heck reaction [195] or separated steps like the oxidative addition and reductive elimination [196-199]. Computational studies by DFT calculations indicated that the mechanism for NHC complexes is most likely the same as that for phosphine ligands [169], but also in this case there is a need for more data before a definitive answer can be given on the mechanism. [Pg.15]

Pd/P(t-Bu)., in the presence of Cy2NMe, is an unusually mild and versatile catalyst for Heck reactions of aryl chlorides (Tables 1 and 2) (as well as for room-temperature reactions of aryl bromides).21 22 23 Example A, the coupling of chlorobenzene with butyl methacrylate, illustrates the application of this method to the stereoselective synthesis of a trisubstituted olefin a-methylcinnamic acid derivatives are an important family of compounds that possess biological activity (e.g., hypolipidemic24 and antibiotic25) and serve as intermediates in the synthesis of pharmaceuticals (e.g., Sulindac, a non-steroidal anti-inflammatory drug26). Example B, the coupling of 4-chlorobenzonitrile with styrene, demonstrates that Pd/P(t-Bu). can catalyze the Heck reaction of activated aryl chlorides at room temperature. [Pg.35]

An interesting parallel was found while the microwave-enhanced Heck reaction was explored on the C-3 position of the pyrazinone system [29]. The additional problem here was caused by the capability of the alkene to undergo Diels-Alder reaction with the 2-azadiene system of the pyrazinone. An interesting competition between the Heck reaction and the Diels-Alder reaction has been noticed, while the outcome solely depended on the substrates and the catalyst system. Microwave irradiation of a mixture of pyrazinone (Re = H), ethyl acrylate (Y = COOEt) and Pd(dppf)Cl2 resulted in the formation of a mixture of the starting material together with the cycloaddition product in a 3 1 ratio (Scheme 15). On the contrary, when Pd(OAc)2 was used in combination with the bulky phosphine ligand 2-(di-t-butylphosphino)biphenyl [41-44], the Heck reaction product was obtained as the sole product. When a mixture of the pyrazinone (Re = Ar) with ethyl acrylate or styrene and Pd(dppf)Cl2 was irradiated at 150 °C for 15 min, both catalytic systems favored the Heck reaction product with no trace of Diels-Alder adduct. [Pg.278]

The Pd-catalysed Heck reaction performed with thiourea as the Ugand exhibit good activities for some catalysts. As for carbene ligands [104], steric hindrance improves catalytic results. Thus, thioureas wearing bulky substituents afford the formation of air- and moisture-stable Pd complexes [105]. For example, the catalyst obtained with 2mol% Pd(dba)2 and Ar,M -dimesitylene-ethylene thiourea (Scheme 24) was still active even after 2 months in an air atmosphere. [Pg.248]

Regarding bis-NHC chelating ligands, several structures that differ in the motifs used for the enlargement of the tether have been proposed as catalysts for the Mizoroki-Heck reaction. They range from non-functionalised aliphatic chains [23-25] to phenyl [26], biphenyl [27], binaphthyls [28] and to chains containing additional coordination positions like ethers [29], amines [30], and pyridines in an evolution towards pincer complexes [31-35], In most cases, the activity of aryl bromides in Mizoroki-Heck transformations was demonstrated to be from moderate to high, while the activation of chlorides was non-existent or poor (Scheme 6.7). [Pg.162]

Other classes of complexes that have been studied in depth in the Mizoroki-Heck reaction are those having a bidentate ligand containing both a NHC and a phosphine. The development of these structures was encouraged by early theoretical work from Rosch, who calculated that such ligands should be promising catalysts for this... [Pg.162]

Related reactions, that have been catalysed by NHC/Pd systems, are the intramolecular Mizoroki-Heck using catalysts formed in situ from imidazolium salts and a Pd(0) source [69], and the arylation of allylic alcohols by a benzothiazole-Pd complex [70,71] (Scheme 6.14). [Pg.166]

Scheme 6.15) are other related processes that can be mentioned alongside the Heck reaction [73], In addition, Ni-based catalysts have also been reported [74],... [Pg.167]

This method ensures the deposition of very reactive metal nanoparticles that require no activation steps before use. We shall review here the following examples of catalytic reactions that are of interest in line chemical synthesis (a) the hydrogenation of substituted arenes, (b) the selective hydrogenation of a, 3-unsaturated carbonyl compounds, (c) the arylation of alkenes with aryl halides (Heck reaction). The efficiency and selectivity of commercial catalysts and of differently prepared nanosized metal systems will be compared. [Pg.439]

Studies on heterogeneous Pd metal catalysts for the arylation of alkenes with aryl halides (the Mirozoki-Heck reaction often reported as Heck reaction) [28] continue to... [Pg.442]

Palladium metal catalysts supported on organic resins containing tertiary amino, cyano, carboxyl, and pyridyl groups have been recently investigated in some Heck reactions, such as the coupling of iodobenzene with methyl acrylate and methyl vinyl ether (Scheme 11) [31]. [Pg.443]


See other pages where Heck reaction catalyst is mentioned: [Pg.38]    [Pg.450]    [Pg.458]    [Pg.38]    [Pg.450]    [Pg.458]    [Pg.45]    [Pg.143]    [Pg.136]    [Pg.241]    [Pg.569]    [Pg.576]    [Pg.34]    [Pg.35]    [Pg.338]    [Pg.931]    [Pg.248]    [Pg.160]    [Pg.124]    [Pg.161]    [Pg.161]    [Pg.202]    [Pg.303]    [Pg.72]    [Pg.228]    [Pg.42]   
See also in sourсe #XX -- [ Pg.439 ]




SEARCH



Heck catalyst

© 2024 chempedia.info