Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heavy synthesis

Early catalysts for acrolein synthesis were based on cuprous oxide and other heavy metal oxides deposited on inert siHca or alumina supports (39). Later, catalysts more selective for the oxidation of propylene to acrolein and acrolein to acryHc acid were prepared from bismuth, cobalt, kon, nickel, tin salts, and molybdic, molybdic phosphoric, and molybdic siHcic acids. Preferred second-stage catalysts generally are complex oxides containing molybdenum and vanadium. Other components, such as tungsten, copper, tellurium, and arsenic oxides, have been incorporated to increase low temperature activity and productivity (39,45,46). [Pg.152]

It is possible to prepare very heavy elements in thermonuclear explosions, owing to the very intense, although brief (order of a microsecond), neutron flux furnished by the explosion (3,13). Einsteinium and fermium were first produced in this way they were discovered in the fallout materials from the first thermonuclear explosion (the "Mike" shot) staged in the Pacific in November 1952. It is possible that elements having atomic numbers greater than 100 would have been found had the debris been examined very soon after the explosion. The preparative process involved is multiple neutron capture in the uranium in the device, which is followed by a sequence of beta decays. Eor example, the synthesis of EM in the Mike explosion was via the production of from followed by a long chain of short-Hved beta decays,... [Pg.215]

The effects of a rather distinct deformed shell at = 152 were clearly seen as early as 1954 in the alpha-decay energies of isotopes of californium, einsteinium, and fermium. In fact, a number of authors have suggested that the entire transuranium region is stabilized by shell effects with an influence that increases markedly with atomic number. Thus the effects of shell substmcture lead to an increase in spontaneous fission half-Hves of up to about 15 orders of magnitude for the heavy transuranium elements, the heaviest of which would otherwise have half-Hves of the order of those for a compound nucleus (lO " s or less) and not of milliseconds or longer, as found experimentally. This gives hope for the synthesis and identification of several elements beyond the present heaviest (element 109) and suggest that the peninsula of nuclei with measurable half-Hves may extend up to the island of stabiHty at Z = 114 andA = 184. [Pg.227]

Three forms of caustic soda are produced to meet customer needs purified diaphragm caustic (50% Rayon grade), 73% caustic, and anhydrous caustic. Regular 50% caustic from the diaphragm cell process is suitable for most appHcations and accounts for about 85% of the NaOH consumed in the United States. However, it caimot be used in operations such as the manufacture of rayon, the synthesis of alkyl aryl sulfonates, or the production of anhydrous caustic because of the presence of salt, sodium chlorate, and heavy metals. Membrane and mercury cell caustic, on the other hand, is of superior quaUty and... [Pg.514]

Fig. 3. The Shell middle distillate synthesis (SMDS) process. HPS = heavy paraffin synthesis. HPC = heavy paraffin conversion. Fig. 3. The Shell middle distillate synthesis (SMDS) process. HPS = heavy paraffin synthesis. HPC = heavy paraffin conversion.
Production of maleic anhydride by oxidation of / -butane represents one of butane s largest markets. Butane and LPG are also used as feedstocks for ethylene production by thermal cracking. A relatively new use for butane of growing importance is isomerization to isobutane, followed by dehydrogenation to isobutylene for use in MTBE synthesis. Smaller chemical uses include production of acetic acid and by-products. Methyl ethyl ketone (MEK) is the principal by-product, though small amounts of formic, propionic, and butyric acid are also produced. / -Butane is also used as a solvent in Hquid—Hquid extraction of heavy oils in a deasphalting process. [Pg.403]

The second reaction is called the Fischer-Tropsch synthesis of hydrocarbons. Depending on the conditions and catalysts, a wide range of hydrocarbons from very light materials up to heavy waxes can be produced. Catalysts for the Fischer-Tropsch reaction iaclude iron, cobalt, nickel, and mthenium. Reaction temperatures range from about 150 to 350°C reaction pressures range from 0.1 to tens of MPa (1 to several hundred atm) (77). The Fischer-Tropsch process was developed iadustriaHy under the designation of the Synthol process by the M. W. Kellogg Co. from 1940 to 1960 (83). [Pg.416]

The Texaco process was first utilized for the production of ammonia synthesis gas from natural gas and oxygen. It was later (1957) appHed to the partial oxidation of heavy fuel oils. This appHcation has had the widest use because it has made possible the production of ammonia and methanol synthesis gases, as well as pure hydrogen, at locations where the lighter hydrocarbons have been unavailable or expensive such as in Maine, Puerto Rico, Brazil, Norway, and Japan. [Pg.422]

Partial oxidation of heavy Hquid hydrocarbons requires somewhat simpler environmental controls. The principal source of particulates is carbon, or soot, formed by the high temperature of the oxidation step. The soot is scmbbed from the raw synthesis gas and either recycled back to the gasifier, or recovered as soHd peUetized fuel. Sulfur and condensate treatment is similar in principle to that required for coal gasification, although the amounts of potential poUutants generated are usually less. [Pg.428]

Solution Polymerization. Two types of solution polymerization technologies are used for LLDPE synthesis. One process utilizes heavy solvents the other is carried out in mixtures of supercritical ethylene and molten PE as a polymerization medium. Original solution processes were introduced for low pressure manufacture of PE resins in the late 1950s subsequent improvements of these processes gradually made them economically competitive with later, more advanced technologies. [Pg.399]

The Rectisol process is more readily appHcable for acid gas removal from synthesis gas made by partial oxidation of heavy feedstocks. The solvents used in Purisol, Fluor Solvent, and Selexol processes have low vapor pressures and hence solution losses are minimal. Absorption systems are generally corrosion-free. [Pg.349]

The main technological uses for UO2 are found in the nuclear fuel cycle as the principal component for light and heavy water reactor fuels. Uranium dioxide is also a starting material for the synthesis of UF [10049-14-6] 6 (both critical for the production of pure uranium metal and... [Pg.324]

Graphite fluoride continues to be of interest as a high temperature lubricant (6). Careful temperature control at 627 3° C results in the synthesis of poly(carbon monofluoride) [25136-85-0] (6). The compound remains stable in air to ca 600°C and is a superior lubricant under extreme conditions of high temperatures, heavy loads, and oxidising conditions (see Lubrication and lubricants). It can be used as an anode for high energy batteries (qv). [Pg.573]

Brit. Pat. Appl. 2,140,014A (Nov. 21, 1984), W. Madej and co-workers (to Blachownia Institute of Heavy Organic Synthesis). [Pg.36]

The use of a fluidized-bed reactor is possible only when the reactants are essentiaUy in the gaseous phase. Eluidized-beds are not suitable for middle distiUate synthesis, where a heavy wax is formed. Eor gasoline synthesis processes like the MobU MTG process and the Synthol process, such reactors are especiaUy suitable when frequent or continuous regeneration of the catalyst is required. Slurry reactors and ebuUiating-bed reactors comprising a three-phase system with very fine catalyst are, in principle, suitable for middle distiUate and wax synthesis, but have not been appHed on a commercial scale. [Pg.277]

Orga.nic Colora.nts. The importance of coal-tar colorants cannot be overemphasized. The cosmetic industry, in cooperation with the FDA, has spent a great deal of time and money in efforts to estabUsh the safety of these dyes (see Colorants for food, drugs, cosmetics, and medical devices). Contamination, especially by heavy metals, and other impurities arising from the synthesis of permitted dyes are stricdy controlled. Despite this effort, the number of usable organic dyes and of pigments derived from them has been drastically curtailed by regulatory action. [Pg.293]

The heavy metals, copper, chromium, mercury, nickel, and 2inc, which are used as catalysts and complexing agents for the synthesis of dyes and dye intermediates, are considered priority poUutants (313). [Pg.386]

Shell Gas B.V. has constructed a 1987 mVd (12,500 bbhd) Fischer-Tropsch plant in Malaysia, start-up occurring in 1994. The Shell Middle Distillate Synthesis (SMDS) process, as it is called, uses natural gas as the feedstock to fixed-bed reactors containing cobalt-based cat- yst. The heavy hydrocarbons from the Fischer-Tropsch reactors are converted to distillate fuels by hydrocracking and hydroisomerization. The quality of the products is very high, the diesel fuel having a cetane number in excess of 75. [Pg.2378]


See other pages where Heavy synthesis is mentioned: [Pg.485]    [Pg.445]    [Pg.128]    [Pg.226]    [Pg.227]    [Pg.227]    [Pg.163]    [Pg.165]    [Pg.166]    [Pg.507]    [Pg.26]    [Pg.81]    [Pg.240]    [Pg.366]    [Pg.421]    [Pg.422]    [Pg.366]    [Pg.491]    [Pg.83]    [Pg.341]    [Pg.259]    [Pg.562]    [Pg.160]    [Pg.277]    [Pg.196]    [Pg.297]    [Pg.885]    [Pg.885]    [Pg.35]    [Pg.38]    [Pg.38]   
See also in sourсe #XX -- [ Pg.211 ]

See also in sourсe #XX -- [ Pg.211 ]




SEARCH



Heavy ketones synthesis

Heavy paraffin synthesis

© 2024 chempedia.info